15 research outputs found

    Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype

    Get PDF
    Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease

    Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function

    Get PDF
    Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009; Guo et al., 2017; Jha et al., 2014; Ruas et al., 2015; Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+-mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand

    Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype

    Get PDF
    Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.This work was funded by the European Union’s Horizon 2020 research and innovation programme (BATCure, grant No. 666918 to DLM, JPB, SEM, TB and SS). JPB is funded by the Agencia Estatal de Investigación (PID2019-105699RB-I00/ AEI / 10.13039/501100011033 and RED2018-102576-T), Plan Nacional sobre Drogas (2020I028), Junta de Castilla y León (Escalera de Excelencia CLU-2017-03), Ayudas Equipos Investigación Biomedicina 2017 Fundación BBVA and Fundación Ramón Areces. SS was funded by a grant from the Mila’s Miracle Foundation. TB was supported by German Research Council (DFG) grant FOR2625. SM benefits from MRC funding to the MRC Laboratory for Molecular Cell Biology University Unit at UCL (award code MC_U12266B) towards laboratory and office space. We acknowledge Marcella Cesana for providing the TFEB virus. Graphical abstract was created using BioRender.com

    An exploratory study of the association between online gaming addiction and enjoyment motivations for playing massively multiplayer online role-playing games

    Get PDF
    Massively multiplayer online role-playing games (MMORPGs) are a popular form of entertainment used by millions of gamers worldwide. Potential problems relating to MMORPG play have emerged, particularly in relation to being addicted to playing in such virtual environments. In the present study, factors relating to online gaming addiction and motivations for playing in MMORPGs were examined to establish whether they were associated with addiction. A sample comprised 1167 gamers who were surveyed about their gaming motivations. Latent Class Analysis revealed seven classes of motivations for playing MMORPGs, which comprised: (1) novelty; (2) highly social and discovery-orientated; (3) aggressive, anti-social and non-curious; (4) highly social, competitive; (5) low intensity enjoyment; (6) discovery-orientated; and (7) social classes. Five classes of gaming addiction-related experiences were extracted including: (1) high risk of addiction, (2) time-affected, (3) intermediate risk of addiction, (4) emotional control, and (5) low risk of addiction classes. Gender was a significant predictor of intermediate risk of addiction and emotional control class membership. Membership of the high risk of addiction class was significantly predicted by belonging to a highly social and competitive class, a novelty class, or an aggressive, anti-social, and non-curious class. Implications of these findings for assessment and treatment of MMORPG addiction are discussed

    TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway

    Get PDF
    The lysosomal calcium channel TRPML1, whose mutations cause the lysosomal storage disorder (LSD) mucolipidosis type IV (MLIV), contributes to upregulate autophagic genes by inducing the nuclear translocation of the transcription factor EB (TFEB). Here we show that TRPML1 activation also induces autophagic vesicle (AV) biogenesis through the generation of phosphatidylinositol 3-phosphate (PI3P) and the recruitment of essential PI3P-binding proteins to the nascent phagophore in a TFEB-independent manner. Thus, TRPML1 activation of phagophore formation requires the calcium-dependent kinase CaMKKβ and AMPK, which increase the activation of ULK1 and VPS34 autophagic protein complexes. Consistently, cells from MLIV patients show a reduced recruitment of PI3P-binding proteins to the phagophore during autophagy induction, suggesting that altered AV biogenesis is part of the pathological features of this disease. Together, we show that TRPML1 is a multistep regulator of autophagy that may be targeted for therapeutic purposes to treat LSDs and other autophagic disorders

    Fingolimod Phosphate Inhibits Astrocyte Inflammatory Activity in Mucolipidosis IV

    No full text
    Mucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1. Knockout of the Mcoln1 gene in a mouse model mirrors clinical and neuropathologic signs in humans. Using this model, we previously observed robust activation of microglia and astrocytes in early symptomatic stages of disease. Here we investigate the consequence of mucolipin-1 loss on astrocyte inflammatory activation in vivo and in vitro and apply a pharmacologic approach to restore Mcoln1/ astrocyte homeostasis using a clinically approved immunomodulator, fingolimod. We found that Mcoln1/ mice over-express numerous pro-inflammatory cytokines, some of which were also over-expressed in astrocyte cultures. Changes in the cytokine profile in Mcoln1/ astrocytes are concomitant with changes in phospho-protein signaling, including activation of PI3K/Akt and MAPK pathways. Fingolimod promotes cytokine homeostasis, down-regulates signaling within the PI3K/Akt and MAPK pathways and restores the lysosomal compartment in Mcoln1/ astrocytes. These data suggest that fingolimod is a promising candidate for preclinical evaluation in our MLIV mouse model, which, in case of success, can be rapidly translated into clinical trial
    corecore