5,086 research outputs found
Overdiagnosis and overtreatment over time
Overdiagnosis and overtreatment are often thought of as relatively recent phenomena, influenced by a contemporary combination of technology, specialization, payment models, marketing, and supply-related demand. Yet a quick glance at the historical record reveals that physicians and medical manufacturers have been accused of iatrogenic excess for centuries, if not millennia. Medicine has long had therapeutic solutions that search for ever-increasing diagnostic problems. Whether the intervention at hand has been leeches and lancets, calomel and cathartics, aspirins and amphetamines, or statins and SSRIs, medical history is replete with skeptical critiques of diagnostic and therapeutic enthusiasm. The opportunity cost of this profusion shapes the other side of the coin: chronic persistence of underdiagnosis and undertreatment. Drawing from key controversies of the 19th and 20th centuries, we chart the enduring challenges of inter-related diagnostic and therapeutic excess. As the present critique of overdiagnosis and overtreatment seeks to mobilize resources from inside and outside of medicine to rein in these impulses, we provide an instructive historical context from which to act
Identifying Acute Coronary Syndrome Patients Approaching End-of-Life
Background: Acute coronary syndrome (ACS) is common in patients approaching the end-of-life (EoL), but these patients rarely receive palliative care. We compared the utility of a palliative care prognostic tool (Gold Standards Framework (GSF)) and the Global Registry of Acute Coronary Events (GRACE) score, to help identify patients approaching EoL. Methods and Findings: 172 unselected consecutive patients with confirmed ACS admitted over an eight-week period were assessed using prognostic tools and followed up for 12 months. GSF criteria identified 40 (23%) patients suitable for EoL care while GRACE identified 32 (19%) patients with $10 % risk of death within 6 months. Patients meeting GSF criteria were older (p = 0.006), had more comorbidities (1.660.7 vs. 1.260.9, p = 0.007), more frequent hospitalisations before (p = 0.001) and after (0.0001) their index admission, and were more likely to die during follow-up (GSF+ 20 % vs GSF- 7%, p = 0.03). GRACE score was predictive of 12-month mortality (C-statistic 0.75) and this was improved by the addition of previous hospital admissions and previous history of stroke (C-statistic 0.88). Conclusions: This study has highlighted a potentially large number of ACS patients eligible for EoL care. GSF or GRACE could be used in the hospital setting to help identify these patients. GSF identifies ACS patients with more comorbidity and at increased risk of hospital readmission
Recommended from our members
Host macrophage response to injectable hydrogels derived from ECM and α-helical peptides
Tissue engineering materials play a key role in how closely the complex architectural and functional characteristics of native healthy tissue can be replicated. Traditional natural and synthetic materials are superseded by bespoke materials that cross the boundary between these two categories. Here we present hydrogels that are derived from decellularised extracellular matrix and those that are synthesised from de novo α-helical peptides. We assess in vitro activation of murine macrophages to our hydrogels and whether these gels induce an M1-like or M2-like phenotype. This was followed by the in vivo immune macrophage response to hydrogels injected into rat partial-thickness abdominal wall defects. Over 28 days we observe an increase in mononuclear cell infiltration at the hydrogel-tissue interface without promoting a foreign body reaction and see no evidence of hydrogel encapsulation or formation of multinucleate giant cells. We also note an upregulation of myogenic differentiation markers and the expression of anti-inflammatory markers Arginase1, IL-10, and CD206, indicating pro-remodelling for all injected hydrogels. Furthermore, all hydrogels promote an anti-inflammatory environment after an initial spike in the pro-inflammatory phenotype. No difference between the injected site and the healthy tissue is seen after 28 days, indicating full integration. These materials offer great potential for future applications in regenerative medicine and towards unmet clinical needs
Minerals and potentially toxic elements in corn silage from tropical and subtropical Brazil
Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Our aim was to assess the mineral composition of corn silages produced in four states of Brazil: Goiás, Minas Gerais, Paraná, and Santa Catarina. In total, seventy-three samples were analyzed. Total element content was extracted by HNO3 and H2O2 microwave-assisted digestion, and inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine concentration. Of the 31 elements analyzed (Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Se, Sr, Ti, Tl, U, V, and Zn), 21 had concentrations above equipment detection limits. No elements reached the maximum tolerable concentration, but concentrations of Ca (0.14-0.15%), Cu (3.4-5.6 mg kg-1), P (0.13-0.16%), S (0.06-0.08%), and Zn (13-19 mg kg-1) were below the adequate concentration for good nutritional balance. The strong and consistent correlation observed between Fe and Ti in silage samples indicated contamination by soil. Mean concentrations of Cu, Mn, Mo, P, S, and Zn were different among states, and canonic analyses successfully discriminate samples according to their state of origin. Minerals from corn silage should be considered when formulating balanced cattle diets. To ensure silage quality, farmers must adopt strategies that reduce contamination by soil during the ensiling process
Herbicide-resistant weeds : from research and knowledge to future needs
Synthetic herbicides have been used globally to control weeds in major field crops. This has imposed a strong selection for any trait that enables plant populations to survive and reproduce in the presence of the herbicide. Herbicide resistance in weeds must be minimized because it is a major limiting factor to food security in global agriculture. This represents a huge challenge that will require great research efforts to develop control strategies as alternatives to the dominant and almost exclusive practice of weed control by herbicides. Weed scientists, plant ecologists and evolutionary biologists should join forces and work towards an improved and more integrated understanding of resistance across all scales. This approach will likely facilitate the design of innovative solutions to the global herbicide resistance challenge
Structural and functional characterization of the oxidoreductase a-DsbA1 from wolbachia pipientis
The α-proteobacterium Wolbachia pipientis is a highly successful intracellular endosymbiont of invertebrates that manipulates its host\u27s reproductive biology to facilitate its own maternal transmission. The fastidious nature of Wolbachia and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations. Structure determination of key Wolbachia proteins will enable the development of inhibitors for chemical genetics studies. Wolbachia encodes a homologue (α-DsbA1) of the Escherichia coli dithiol oxidase enzyme EcDsbA, essential for the oxidative folding of many exported proteins. We found that the active-site cysteine pair of Wolbachia α-DsbA1 has the most reducing redox potential of any characterized DsbA. In addition, Wolbachia α-DsbA1 possesses a second disulfide that is highly conserved in α-proteobacterial DsbAs but not in other DsbAs. The α-DsbA1 structure lacks the characteristic hydrophobic features of EcDsbA, and the protein neither complements EcDsbA deletion mutants in E. coli nor interacts with EcDsbB, the redox partner of EcDsbA. The surface characteristics and redox profile of α-DsbA1 indicate that it probably plays a specialized oxidative folding role with a narrow substrate specificity. This first report of a Wolbachia protein structure provides the basis for future chemical genetics studies.<br /
Effectively Measuring Exercise-Related Variations in T1ρ and T2 Relaxation Times of Healthy Articular Cartilage.
BACKGROUND: Determining the compositional response of articular cartilage to dynamic joint-loading using MRI may be a more sensitive assessment of cartilage status than conventional static imaging. However, distinguishing the effects of joint-loading vs. inherent measurement variability remains difficult, as the repeatability of these quantitative methods is often not assessed or reported. PURPOSE: To assess exercise-induced changes in femoral, tibial, and patellar articular cartilage composition and compare these against measurement repeatability. STUDY TYPE: Prospective observational study. POPULATION: Phantom and 19 healthy participants. FIELD STRENGTH/SEQUENCE: 3T; 3D fat-saturated spoiled gradient recalled-echo; T1ρ - and T2 -prepared pseudosteady-state 3D fast spin echo. ASSESSMENT: The intrasessional repeatability of T1ρ and T2 relaxation mapping, with and without knee repositioning between two successive measurements, was determined in 10 knees. T1ρ and T2 relaxation mapping of nine knees was performed before and at multiple timepoints after a 5-minute repeated, joint-loading stepping activity. 3D surface models were created from patellar, femoral, and tibial articular cartilage. STATISTICAL TESTS: Repeatability was assessed using root-mean-squared-CV (RMS-CV). Using Bland-Altman analysis, thresholds defined as the smallest detectable difference (SDD) were determined from the repeatability data with knee repositioning. RESULTS: Without knee repositioning, both surface-averaged T1ρ and T2 were very repeatable on all cartilage surfaces, with RMS-CV SDD) average exercise-induced in T1ρ and T2 of femoral (-8.0% and -5.3%), lateral tibial (-6.9% and -5.9%), medial tibial (+5.8% and +2.9%), and patellar (-7.9% and +2.8%) cartilage were observed. DATA CONCLUSION: Joint-loading with a stepping activity resulted in T1ρ and T2 changes above background measurement error. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1753-1764.GlaxoSmithKline
National Institute of Health Research (NIHR) Cambridge Biomedical Research Centr
- …