5,104 research outputs found

    The Puck Stops Here: Evolving Social Norms of Helmet Usage in the National Hockey League

    Get PDF
    Since the mid 1960s, the use of safety helmets in the National Hockey League (NHL) went from virtually nil to almost universal adoption. Despite horrific injuries sustained by players early in the history of the sport, widespread helmet adoption did not take place immediately. Using the NHL as an example, this paper examines the process of emerging norms in a social group, considering peer influence and exogenous policy impacts. The historical circumstances surrounding the NHL helmet usage policy changes are presented, along with a brief survey of the social science modeling of cultural norms. The study presents a peer-influence model in which players helmet usage decisions are influenced by their immediate social network and an exogenous mandate requiring helmet usage for new players. Model results are compared to actual NHL helmet usage trends based on data extracted by review of NHL game footage. The results show eventual dominance of helmet usage, but without the wide fluctuations in the actual historical adoption trends. The study is of interest to policy makers comparing interventionist strategies versus social network based approaches for influencing cultural norms of behavior

    Radiographic assessment of the skeletons of Dolly and other clones finds no abnormal osteoarthritis

    Get PDF
    Our recent report detailing the health status of cloned sheep concluded that the animals had aged normally. This is in stark contrast to reports on Dolly (first animal cloned from adult cells) whose diagnoses of osteoarthritis (OA) at 5½ years of age led to considerable scientific concern and media debate over the possibility of early-onset age-related diseases in cloned animals. Our study included four 8-year old ewes derived from the cell line that gave rise to Dolly, yet none of our aged sheep showed clinical signs of OA, and they had radiographic evidence of only mild or, in one case, moderate OA. Given that the only formal record of OA in Dolly is a brief mention of a single joint in a conference abstract, this led us to question whether the original concerns about Dolly’s OA were justified. As none of the original clinical or radiographic records were preserved, we undertook radiographic examination of the skeletons of Dolly and her contemporary clones. We report a prevalence and distribution of radiographic-OA similar to that observed in naturally conceived sheep, and our healthy aged cloned sheep. We conclude that the original concerns that cloning had caused early-onset OA in Dolly were unfounded

    Uncertainties in global aerosols and climate effects due to biofuel emissions

    Get PDF
    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from −0.02 to +0.06 W m−2 across all simulation/mixing-state combinations with regional effects in source regions ranging from −0.2 to +0.8 W m−2. The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to −0.02 W m−2 with regional effects in source regions ranging from −1.0 to −0.05 W m−2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties in model inputs. This uncertainty limits our ability to introduce mitigation strategies aimed at reducing biofuel black carbon emissions in order to counter warming effects from greenhouse gases. To better understand the climate impact of particle emissions from biofuel combustion, we recommend field/laboratory measurements to narrow constraints on (1) emissions mass, (2) emission size distribution, (3) mixing state, and (4) ratio of black carbon to organic aerosol

    Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    Get PDF
    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m−2 and the global mean cloud-albedo aerosol indirect effect of between −0.008 and −0.056 W m−2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates

    Flexible, actin-based ridges colocalise with the β1 integrin on the surface of melanoma cells

    Get PDF
    Using a combination of laser-scanning confocal microscopy and atomic force microscopy, we have identified flexible, actin-based structures on the surface of cells derived from the vertical growth phase of melanoma progression. These flexible structures, lacking on the surface of mature melanocytes, were observed on the surface of all four melanoma cell lines tested. Further investigation revealed that the β1 integrin colocalises with these actin-based ridges on the cell surface, whereas β1 integrin distribution in melanocytes did not correlate with actin-based structures. Fibronectin staining on the surface of melanoma cells was partially codistributed with the ridges. The combination of structural information derived from atomic force microscopy images and fluorescent imaging of the distribution of labelled proteins involved in invasion and metastasis has allowed us to identify a common feature that may be involved in disease progression, at the surface of vertical growth phase melanoma cells, despite the known variation in genetic composition of melanoma

    α-Helical Peptides on Plasma-Treated Polymers Promote Ciliation of Airway Epithelial Cells

    Get PDF
    Airway respiratory epithelium forms a physical barrier through intercellular tight junctions, which prevents debris from passing through to the internal environment while ciliated epithelial cells expel particulate-trapping mucus up the airway. Polymeric solutions to loss of airway structure and integrity have been unable to fully restore functional epithelium. We hypothesized that plasma treatment of polymers would permit adsorption of α-helical peptides and that this would promote functional differentiation of airway epithelial cells. Five candidate plasma compositions are compared; Air, N2, H2, H2:N2 and Air:N2. X-ray photoelectron spectroscopy shows changes in at% N and C 1s peaks after plasma treatment while electron microscopy indicates successful adsorption of hydrogelating self-assembling fibres (hSAF) on all samples. Subsequently, adsorbed hSAFs support human nasal epithelial cell attachment and proliferation and induce differentiation at an air-liquid interface. Transepithelial measurements show that the cells form tight junctions and produce cilia beating at the normal expected frequency of 10-11 Hz after 28 days in culture. The synthetic peptide system described in this study offers potential superiority as an epithelial regeneration substrate over present “gold-standard” materials, such as collagen, as they are controllable and can be chemically functionalised to support a variety of in vivo environments. Using the hSAF peptides described here in combination with plasma-treated polymeric surfaces could offer a way of improving the functionality and integration of implantable polymers for aerodigestive tract reconstruction and regeneration

    Estimating physical activity and sedentary behaviour in a free-living environment: A comparative study between Fitbit Charge 2 and Actigraph GT3X

    Get PDF
    Background: Activity trackers such as the Fitbit Charge 2 enable users and researchers to monitor physical activity in daily life, which could be beneficial for changing behaviour. However, the accuracy of the Fitbit Charge 2 in a free-living environment is largely unknown. Objective: To investigate the agreement between Fitbit Charge 2 and ActiGraph GT3X for the estimation of steps, energy expenditure, time in sedentary behaviour, and light and moderate-to-vigorous physical activity under free-living conditions, and further examine to what extent placing the ActiGraph on the wrist as opposed to the hip would affect the findings. Methods: 41 adults (n = 10 males, n = 31 females) were asked to wear a Fitbit Charge 2 device and two ActiGraph GT3X devices (one on the hip and one on the wrist) for seven consecutive days and fill out a log of wear times. Agreement was assessed through Bland-Altman plots combined with multilevel analysis. Results: The Fitbit measured 1,492 steps/day more than the hip-worn ActiGraph (limits of agreement [LoA] = -2,250; 5,234), while for sedentary time, it measured 25 min/day less (LoA = -137; 87). Both Bland-Altman plots showed fixed bias. For time in light physical activity, the Fitbit measured 59 min/day more (LoA = -52;169). For time in moderate-to-vigorous physical activity, the Fitbit measured 31 min/day less (LoA = -132; 71) and for activity energy expenditure it measured 408 kcal/day more than the hip-worn ActiGraph (LoA = -385; 1,200). For the two latter outputs, the plots indicated proportional bias. Similar or more pronounced discrepancies, mostly in opposite direction, appeared when comparing to the wrist-worn ActiGraph. Conclusion: Moderate to substantial differences between devices were found for most outputs, which could be due to differences in algorithms. Caution should be taken if replacing one device with another and when comparing results

    P2X receptors: epithelial ion channels and regulators of salt and water transport.

    Get PDF
    When the results from electrophysiological studies of renal epithelial cells are combined with data from in vivo tubule microperfusion experiments and immunohistochemical surveys of the nephron, the accumulated evidence suggests that ATP-gated ion channels, P2X receptors, play a specialized role in the regulation of ion and water movement across the renal tubule and are integral to electrolyte and fluid homeostasis. In this short review, we discuss the concept of P2X receptors as regulators of salt and water salvage pathways, as well as acknowledging their accepted role as ATP-gated ion channels
    corecore