7,727 research outputs found

    Competitive Activation of a Methyl C−H Bond of Dimethylformamide at an Iridium Center

    Get PDF
    During the synthesis of [AsPh_4][Ir(CO)_2I_3Me] by refluxing IrCl_3·3H_2O in DMF (DMF = dimethylformamide) in the presence of aqueous HCl, followed by sequential treatment with [AsPh_4]Cl, NaI, and methyl iodide and finally recrystallization from methylene chloride/pentane, three crystalline byproducts were obtained: [AsPh4]_2[Ir(CO)I_5], [AsPh_4]_2[trans-Ir(CO)I_4Cl], and [AsPh_4][Ir(CO)(κ^2O,C-CH_2NMeCHO)Cl_2I]. The last of these, whose structure (along with the others) was determined by X-ray diffraction, results from activation of a methyl C−H bond of dimethylformamide, rather than the normally much more reactive aldehydic C−H bond

    Do music festival communities address environmental sustainability and how? A Scottish case study

    Get PDF
    © 2019 Cambridge University Press. This article discusses the findings of an Arts and Humanities Research Council project researching how music festival communities in Scotland can address issues of environmental sustainability and climate change. It investigates how music festival communities are constructed with a focus on what role, if any, they might play in responding to the global challenge of environmental sustainability. Using music festivals in Scotland as a case study, we employed a variety of research methods to interrogate different constituents in music festival communities about their views and behaviours regarding climate change and environmental sustainability. These included festival audiences via onsite questionnaires; festival organisers and promoters via interviews and focus groups; and musicians via creative practice-led research. We conclude that rather than necessarily being a site for progressive or utopian socio-cultural experimentation (as they are occasionally portrayed in festival literature), music festival communities engage in complex and often contradictory behaviours when it comes to responding to - and making sense of - their own complicity in social challenges such as climate change

    Utilizing Protein-Lean Coproducts from Corn Containing Recombinant Pharmaceutical Proteins for Ethanol Production

    Get PDF
    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) andr-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127−139 and 138−155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS

    Novel B(Ar')2(Ar'') hetero-tri(aryl)boranes: a systematic study of Lewis acidity

    Get PDF
    A series of homo- and hetero-tri(aryl)boranes incorporating pentafluorophenyl, 3,5-bis(trifluoromethyl)phenyl, and pentachlorophenyl groups, four of which are novel species, have been studied as the acidic component of frustrated Lewis pairs for the heterolytic cleavage of H2. Under mild conditions eight of these will cleave H2; the rate of cleavage depending on both the electrophilicity of the borane and the steric bulk around the boron atom. Electrochemical studies allow comparisons of the electrophilicity with spectroscopic measurements of Lewis acidity for different series of boranes. Discrepancies in the correlation between these two types of measurements, combined with structural characterisation of each borane, reveal that the twist of the aryl rings with respect to the boron-centred trigonal plane is significant from both a steric and electronic perspective, and is an important consideration in the design of tri(aryl)boranes as Lewis acids

    Neutrophil String Formation: Hydrodynamic Thresholding and Cellular Deformation during Cell Collisions

    Get PDF
    Neutrophils unexpectedly display flow-enhanced adhesion (hydrodynamic thresholding) to L-selectin in rolling or aggregation assays. We report that the primary collision efficiency (ε) of flowing neutrophils with preadhered neutrophils on intercellular adhesion molecule-1 (ICAM-1) or fibrinogen also displayed a maximum of ε ~ 0.4–0.45 at a wall shear rate of 100 s-1, an example of thresholding. Primary collision lifetime with no detectable bonding decreased from 130 to 10 ms as wall shear rate increased from 30 to 300 s-1, whereas collision lifetimes with bonding decreased from 300 to 100 ms over this shear range using preadhered neutrophils on ICAM-1, with similar results for fibrinogen. Antibodies against L-selectin, but not against CD11a, CD11b, or CD18, reduced ε at 100 s-1 by \u3e85%. High resolution imaging detected large scale deformation of the flowing neutrophil during the collision at 100 s-1 with the apparent contact area increasing up to ~40 μm2. We observed the formation of long linear string assemblies of neutrophils downstream of neutrophils preadhered to ICAM-1, but not fibrinogen, with a maximum in string formation at 100 s-1. Secondary capture events to the ICAM-1 or fibrinogen coated surfaces after primary collisions were infrequent and short lived, typically lasting from 500 to 3500 ms. Between 5 and 20% of neutrophil interactions with ICAM-1 substrate converted to firm arrest (\u3e3500 ms) and greatly exceeded that observed for fibrinogen, thus defining the root cause of poor string formation on fibrinogen at all shear rates. Additionally, neutrophils mobilized calcium after incorporation into strings. Static adhesion also caused calcium mobilization, as did the subsequent onset of flow. To our knowledge, this is the first report of 1), hydrodynamic thresholding in neutrophil string formation; 2), string formation on ICAM-1 but not on fibrinogen; 3), large cellular deformation due to collisions at a venous shear rate; and 4), mechanosensing through neutrophil β2-integrin/adhesion. The increased contact area during deformation was likely responsible for the hydrodynamic threshold observed in the primary collision efficiency since no increase in primary collision lifetime was detected as shear forces were increased (for either surface coating)

    What have we already learned from the CMB?

    Get PDF
    The COBE satellite, and the DMR experiment in particular, was extraordinarily successful. However, the DMR results were announced about 7 years ago, during which time a great deal more has been learned about anisotropies in the Cosmic Microwave Background (CMB). The CMB experiments currently being designed and built, including long-duration balloons, interferometers, and two space missions, promise to address several fundamental cosmological issues. We present our evaluation of what we already know, what we are beginning to learn now, and what the future may bring.Comment: 20 pages, 3 figures. Changes to match version accepted by PAS
    • …
    corecore