1,688 research outputs found
Generation of MLE-15 IRF9 knockdown cells for studying the antimicrobial role of TLRs agonist-induced lung epithelium’s reactive oxygen species
https://openworks.mdanderson.org/sumexp23/1087/thumbnail.jp
A computational analysis of the long-term regulation of arterial pressure
The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production—the acute pressure-diuresis and pressure-natriuresis curves—physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the “Guyton-Coleman model”, no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. representing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex
Bullying and school disruption assessment: studies with Portuguese adolescent students
Problem Statement: The question of bullying and school disruptive behavior has emerged as a powerful issue in Portuguese
educational context. The lack of evaluation instruments, with studied psychometric characteristics, has constituted a problem.
Purpose of Study: School disruption and bullying assessment, in Portuguese adolescents, was the focus of this research.
Research Methods: The psychometric qualities — internal consistency and the external validity — were analyzed in different
scales.
Findings: The analyses carried out confirm the scales as reliable and valid instruments. Conclusions: These instruments may be
a useful avenue for teachers, psychologists and other education professionals
Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1.
Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies
An explanation for a universality of transition temperatures in families of copper oxide superconductors
A remarkable mystery of the copper oxide high-transition-temperature (Tc)
superconductors is the dependence of Tc on the number of CuO2 layers, n, in the
unit cell of a crystal. In a given family of these superconductors, Tc rises
with the number of layers, reaching a peak at n=3, and then declines: the
result is a bell-shaped curve. Despite the ubiquity of this phenomenon, it is
still poorly understood and attention has instead been mainly focused on the
properties of a single CuO2 plane. Here we show that the quantum tunnelling of
Cooper pairs between the layers simply and naturally explains the experimental
results, when combined with the recently quantified charge imbalance of the
layers and the latest notion of a competing order nucleated by this charge
imbalance that suppresses superconductivity. We calculate the bell-shaped curve
and show that, if materials can be engineered so as to minimize the charge
imbalance as n increases, Tc can be raised further.Comment: 15 pages, 3 figures. The version published in Natur
Inhibition of angiogenesis and suppression of colorectal cancer metastatic to the liver using the Sleeping Beauty Transposon System
<p>Abstract</p> <p>Background</p> <p>Metastatic colon cancer is one of the leading causes of cancer-related death worldwide, with disease progression and metastatic spread being closely associated with angiogenesis. We investigated whether an antiangiogenic gene transfer approach using the <it>Sleeping Beauty </it>(SB) transposon system could be used to inhibit growth of colorectal tumors metastatic to the liver.</p> <p>Results</p> <p>Liver CT26 tumor-bearing mice were hydrodynamically injected with different doses of a plasmid containing a transposon encoding an angiostatin-endostatin fusion gene (Statin AE) along with varying amounts of SB transposase-encoding plasmid. Animals that were injected with a low dose (10 μg) of Statin AE transposon plasmid showed a significant decrease in tumor formation only when co-injected with SB transposase-encoding plasmid, while for animals injected with a higher dose (25 μg) of Statin AE transposon, co-injection of SB transposase-encoding plasmid did not significantly affect tumor load. For animals injected with 10 μg Statin AE transposon plasmid, the number of tumor nodules was inversely proportional to the amount of co-injected SB plasmid. Suppression of metastases was further evident in histological analyses, in which untreated animals showed higher levels of tumor cell proliferation and tumor vascularization than animals treated with low dose transposon plasmid.</p> <p>Conclusion</p> <p>These results demonstrate that hepatic colorectal metastases can be reduced using antiangiogenic transposons, and provide evidence for the importance of the transposition process in mediating suppression of these tumors.</p
Astrophysical Constraints on Modifying Gravity at Large Distances
Recently, several interesting proposals were made modifying the law of
gravity on large scales, within a sensible relativistic formulation. This
allows a precise formulation of the idea that such a modification might account
for galaxy rotation curves, instead of the usual interpretation of these curves
as evidence for dark matter. We here summarize several observational
constraints which any such modification must satisfy, and which we believe make
more challenging any interpretation of galaxy rotation curves in terms of new
gravitational physics.Comment: References added, submitted to Classical & Quantum Gravit
Nonlinear anomalous diffusion equation and fractal dimension: Exact generalized gaussian solution
In this work we incorporate, in a unified way, two anomalous behaviors, the
power law and stretched exponential ones, by considering the radial dependence
of the -dimensional nonlinear diffusion equation where , ,
, and are real parameters and is a time-dependent
source. This equation unifies the O'Shaugnessy-Procaccia anomalous diffusion
equation on fractals () and the spherical anomalous diffusion for
porous media (). An exact spherical symmetric solution of this
nonlinear Fokker-Planck equation is obtained, leading to a large class of
anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation
are also discussed by introducing an effective potential.Comment: Latex, 6 pages. To appear in Phys. Rev.
Time-Resolved Studies of Stick-Slip Friction in Sheared Granular Layers
Sensitive and fast force measurements are performed on sheared granular
layers undergoing stick-slip motion, along with simultaneous imaging. A full
study has been done for spherical particles with a +-20% size distribution.
Stick-slip motion due to repetitive fluidization of the layer occurs for low
driving velocities. Between major slip events, slight creep occurs that is
variable from one event to the next. The effects of changing the stiffness k
and velocity V of the driving system are studied in detail. The stick-slip
motion is almost periodic for spherical particles over a wide range of
parameters, but becomes irregular when k is large and V is relatively small. At
larger V, the motion becomes smoother and is affected by the inertia of the
upper plate bounding the layer. Measurements of the period T and amplitude A of
the relative motion are presented as a function of V. At a critical value Vc, a
transition to continuous sliding motion occurs that is discontinuous for k not
too large. The time dependence of the instantaneous velocity of the upper plate
and the frictional force produced by the granular layer are determined within
individual slipping events. The force is a multi-valued function of the
instantaneous velocity, with pronounced hysteresis and a sudden drop prior to
resticking. Measurements of vertical displacement reveal a small dilation of
the material (about one tenth of the mean particle size in a layer 20 particles
deep) associated with each slip event. Finally, optical imaging reveals that
localized microscopic rearrangements precede (and follow) each slip event. The
behavior of smooth particles is contrasted with that of rough particles.Comment: 20, pages, 17 figures, to appear in Phys. Rev.
Asteroid exploration and utilization
The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources possessed by asteroids have enormous potential for aiding and enhancing human space exploration as well as life on Earth. Project STONER (Systematic Transfer of Near Earth Resources) is based on mining an asteroid and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plan for humans to utilize asteroid resources. Project STONER is divided into two parts: asteroid selection and explorer spacecraft design. The spacecraft design team is responsible for the selection and integration of the subsystems: GNC, communications, automation, propulsion, power, structures, thermal systems, scientific instruments, and mechanisms used on the surface to retrieve and store asteroid regolith. The sample return mission scenario consists of eight primary phases that are critical to the mission
- …