

Generation of MLE-15 IRF9 knockdown cells for studying the antimicrobial role of TLRs agonist-induced lung epithelium's reactive oxygen species Carlson Ogata¹, Mbaya Ntita, PhD², and Scott E. Evans, MD²

¹Brown University, Providence, RI, USA

²Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®

Introduction

- On the global scale, viral and bacterial pneumonia are prominent health threats.¹
- Immunomodulation via inhalation of synergistic agents Pam2CSK4 ("Pam2," a TLR2/6 ligand) and ODN M362 ("ODN," a TLR9 ligand), together known as "Pam2ODN," broadly protects mice against lower respiratory tract infections by lung epithelial reactive oxygen species (ROS)-mediated pathogen killing.^{2,3}
- Current efforts focus on understanding the molecular mechanism underlying this Pam2ODNinduced ROS. The Interferon-Stimulated Gene Factor 3 (ISGF3) transcription factor complex– composed of STAT1, STAT2, and IRF9–drives a *DUOX2*-induced ROS antiviral immune response through its non-canonical STAT2/IRF9-dependent activation pathway.⁴
- Previous microarray data reported the upregulation of IRF9 by Pam2ODN in the cell lines culture and highlighted the requirement of Pam2ODNinduced *Duox2* and ROS to protect mice against viral and bacterial infections.^{2,3,5}

Early Findings

Objective

- Evaluate the driving relationship between IRF9 and *DUOX2*.
- Apply molecular biology techniques to generate a stable IRF9 knockdown MLE-15 cell line for study.

Methods

- Bacterial transformation using competent *E. coli* cells was used to clone IRF9 and insert the DNA sequence into a vector backbone.
- Extracted DNA was subsequently used in lentiviral transfection with 293T cells; viral media was collected and used to infect MLE-15 cells to complete IRF9 knockdown.
- Green fluorescent protein (GFP) expression was measured following transfection and infection to confirm the knockdown of IRF9 in the MLE-15 cell line.

Conclusion

- After transfection, positive cells inserting the target IRF9 knockdown can be clearly distinguished by GFP expression.
- GFP-positive MLE-15 cells indicate successful infection of the IRF9 lentivirus.
- Generation of a knockdown IRF9 MLE-15 cell line is critical for evaluating the relationship between IRF9 and *Duox2*, as well as other ISGF3-induced genes, as the line offers RNA stability not provided by the siRNA IRF9.

Future Directions

 Use of the MLE-15 IRF9 knockdown line will be used in further molecular biology and immunology experiments including qPCR, blotting, and microarrays to explore the causal relationship between IRF9 and DUOX2 expression.

Acknowledgements

This project is supported by NIH Grant R35 HL144805 to S.E.E. I would like to thank the Evans Laboratory, the University of Texas MD Anderson Cancer Center,

Our examination of IRF9, STAT1, and STAT2 gene regulation using small interfering RNA (siRNA) showed a significant decrease in *Duox2* expression with the siRNA IRF9 and STAT2, but saw normal *Duox2* with siRNA STAT1, alluding to the hypothesis that IRF9 and STAT2 are more likely required for *DUOX2* expression.

Fig 1. Compared to siRNA control, siRNA IRF9 and siRNA STAT2 show significantly lower *Duox2* expression. siRNA STAT1 *Duox2* expression is insignificantly affected.

Fig 2. Diagram of steps for (a) lentivirus production from HEK 293T cells and (b) lentivirus transduction of MLE-15 target cells via centrifugation.⁶

Results

Expression of GFP in MLE-15 cells alludes to successful IRF9 lentivirus infection and creation of a stable IRF9 MLE-15 knockdown cell line. GFP-positive cells were sorted and expanded following infection.

Fig 3. (a) Control MLE-15 cells without IRF9 lentivirus infection and (b) treated MLE-15 cells with IRF9 lentivirus infection.

and the Summer Undergraduate Research Program for their mentorship and guidance.

References

- 1. Wali, S. et al. Immune Modulation to Improve Survival of Viral Pneumonia in Mice. American Journal of Respiratory Cell and Molecular Biology 63(6):758-766, 2020.
- Kirkpatrick, C.T. et al. Inducible lung epithelial resistance requires multisource reactive oxygen species generation to protect against viral infections. MBio 9(3), 2018.
- Ware, H.H. et al. Inducible lung epithelial resistance requires multisource reactive oxygen species generation to protect against bacterial infections. PLOS One 14(2):e0208216, 2019.
- Fink, K. et al. IFNβ/TNFα synergism induces a noncanonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH Oxidase-mediated airway antiviral response. Cell Research 23:673-690, 2013.
- Duggan, J.M. et al. Synergistic interactions of TLR2/6 and TLR9 induce a high level of resistance to lung infection in mice. Journal of Immunology 186(10):5916-26, 2011.
- 6. He, X. et al. Optimized protocol for high-titer lentivirus production and transduction of primary fibroblasts. Journal of Basic Microbiology 61(5):430-442.