333 research outputs found

    Changes in European wind energy generation potential within a 1.5°C warmer world

    Get PDF
    Global climate model simulations from the "Half a degree Additional warming, Prognosis and Projected Impacts" (HAPPI) project were used to assess how wind power generation over Europe would change in a future world where global temperatures reach 1.5°C above pre-industrial levels. Comparing recent historical (2006-2015) and future 1.5°C forcing experiments highlights that the climate models demonstrate a northward shift in the Atlantic jet, leading to a significant (p<0.01) increase in surface winds over the UK and Northern Europe and a significant (p<0.05) reduction over Southern Europe. The northward shift of the jet is in agreement with other studies. We use a wind turbine power model to transform daily near-surface (10 m) wind speeds into daily wind power output, accounting for sub-daily variability, the height of the turbine, and power losses due to transmission and distribution of electricity. To reduce regional model biases we use bias-corrected 10 m wind speeds. We see an increase in power generation potential over much of Europe, with the greatest increase in load factor over the UK of around four percentage points. Increases in variability are seen over much of central and northern Europe with the largest seasonal change in summer. Focusing on the UK, we find that wind energy production during spring and autumn under 1.5°C forcing would become as productive as it is currently during the peak winter season. Similarly, summer winds would increase driving up wind generation to resemble levels currently seen in spring and autumn. We conclude that the potential for wind energy in Northern Europe may be greater than has been previously assumed, with likely increases even in a 1.5°C warmer world. While there is the potential for Southern Europe to see a reduction in their wind resource, these decreases are likely to be negligible

    Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control

    Get PDF
    This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and potentially nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a generic, spatial branch-and-bound algorithm. A new operation, called lifting, is introduced, which refines the control parameterization via a Gram-Schmidt orthogonalization process, while simultaneously eliminating control subregions that are either infeasible or that provably cannot contain any global optima. Conditions are given under which the image of the control parameterization error in the state space contracts exponentially as the parameterization order is increased, thereby making the lifting operation efficient. A computational technique based on ellipsoidal calculus is also developed that satisfies these conditions. The practical applicability of branch-and-lift is illustrated in a numerical example. © 2013 Springer Science+Business Media New York

    Learning physics in context: a study of student learning about electricity and magnetism

    Full text link
    This paper re-centres the discussion of student learning in physics to focus on context. In order to do so, a theoretically-motivated understanding of context is developed. Given a well-defined notion of context, data from a novel university class in electricity and magnetism are analyzed to demonstrate the central and inextricable role of context in student learning. This work sits within a broader effort to create and analyze environments which support student learning in the sciencesComment: 36 pages, 4 Figure

    Limits on the gravity wave contribution to microwave anisotropies

    Get PDF
    We present limits on the fraction of large angle microwave anisotropies which could come from tensor perturbations. We use the COBE results as well as smaller scale CMB observations, measurements of galaxy correlations, abundances of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to provide conservative limits on the tensor-to-scalar ratio for standard inflationary models. For power-law inflation, for example, we find T/S<0.52 at 95% confidence, with a similar constraint for phi^p potentials. However, for models with tensor amplitude unrelated to the scalar spectral index it is still currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D. Calculations extended to blue spectral index, Fig. 6 added, discussion of results expande

    MultiCellDS : a community-developed standard for curating microenvironment-dependent multicellular data

    Get PDF
    Exchanging and understanding scientific data and their context represents a significant barrier to advancing research, especially with respect to information siloing. Maintaining information provenance and providing data curation and quality control help overcome common concerns and barriers to the effective sharing of scientific data. To address these problems in and the unique challenges of multicellular systems, we assembled a panel composed of investigators from several disciplines to create the MultiCellular Data Standard (MultiCellDS) with a use-case driven development process. The standard includes (1) digital cell lines, which are analogous to traditional biological cell lines, to record metadata, cellular microenvironment, and cellular phenotype variables of a biological cell line, (2) digital snapshots to consistently record simulation, experimental, and clinical data for multicellular systems, and (3) collections that can logically group digital cell lines and snapshots. We have created a MultiCellular DataBase (MultiCellDB) to store digital snapshots and the 200+ digital cell lines we have generated. MultiCellDS, by having a fixed standard, enables discoverability, extensibility, maintainability, searchability, and sustainability of data, creating biological applicability and clinical utility that permits us to identify upcoming challenges to uplift biology and strategies and therapies for improving human health

    MultiCellDS: a community-developed standard for curating microenvironment-dependent multicellular data

    Get PDF
    Exchanging and understanding scientific data and their context represents a significant barrier to advancing research, especially with respect to information siloing. Maintaining information provenance and providing data curation and quality control help overcome common concerns and barriers to the effective sharing of scientific data. To address these problems in and the unique challenges of multicellular systems, we assembled a panel composed of investigators from several disciplines to create the MultiCellular Data Standard (MultiCellDS) with a use-case driven development process. The standard includes (1) digital cell lines, which are analogous to traditional biological cell lines, to record metadata, cellular microenvironment, and cellular phenotype variables of a biological cell line, (2) digital snapshots to consistently record simulation, experimental, and clinical data for multicellular systems, and (3) collections that can logically group digital cell lines and snapshots. We have created a MultiCellular DataBase (MultiCellDB) to store digital snapshots and the 200+ digital cell lines we have generated. MultiCellDS, by having a fixed standard, enables discoverability, extensibility, maintainability, searchability, and sustainability of data, creating biological applicability and clinical utility that permits us to identify upcoming challenges to uplift biology and strategies and therapies for improving human health

    Near-Infrared Spectral Monitoring of Triton with IRTF/SpeX II: Spatial Distribution and Evolution of Ices

    Full text link
    This report arises from an ongoing program to monitor Neptune's largest moon Triton spectroscopically in the 0.8 to 2.4 micron range using IRTF/SpeX. Our objective is to search for changes on Triton's surface as witnessed by changes in the infrared absorption bands of its surface ices N2, CH4, H2O, CO, and CO2. We have recorded infrared spectra of Triton on 53 nights over the ten apparitions from 2000 through 2009. The data generally confirm our previously reported diurnal spectral variations of the ice absorption bands (Grundy & Young 2004). Nitrogen ice shows a large amplitude variation, with much stronger absorption on Triton's Neptune-facing hemisphere. We present evidence for seasonal evolution of Triton's N2 ice: the 2.15 micron absorption band appears to be diminishing, especially on the Neptune-facing hemisphere. Although it is mostly dissolved in N2 ice, Triton's CH4 ice shows a very different longitudinal variation from the N2 ice, challenging assumptions of how the two ices behave. Unlike Triton's CH4 ice, the CO ice does exhibit longitudinal variation very similar to the N2 ice, implying that CO and N2 condense and sublimate together, maintaining a consistent mixing ratio. Absorptions by H2O and CO2 ices show negligible variation as Triton rotates, implying very uniform and/or high latitude spatial distributions for those two non-volatile ices.Comment: 22 pages, 13 figures, 5 tables, to appear in Icaru

    MultiCellDS: a standard and a community for sharing multicellular data

    Get PDF
    Cell biology is increasingly focused on cellular heterogeneity and multicellular systems. To make the fullest use of experimental, clinical, and computational efforts, we need standardized data formats, community-curated "public data libraries", and tools to combine and analyze shared data. To address these needs, our multidisciplinary community created MultiCellDS (MultiCellular Data Standard): an extensible standard, a library of digital cell lines and tissue snapshots, and support software. With the help of experimentalists, clinicians, modelers, and data and library scientists, we can grow this seed into a community-owned ecosystem of shared data and tools, to the benefit of basic science, engineering, and human health
    corecore