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Abstract: 
Cell biology is increasingly focused on cellular heterogeneity and multicellular systems. To make the fullest use of experi-
mental, clinical, and computational efforts, we need standardized data formats, community-curated “public data libraries”, 
and tools to combine and analyze shared data. To address these needs, our multidisciplinary community created Multi-
CellDS (MultiCellular Data Standard): an extensible standard, a library of digital cell lines and tissue snapshots, and sup-
port software. With the help of experimentalists, clinicians, modelers, and data and library scientists, we can grow this 
seed into a community-owned ecosystem of shared data and tools, to the benefit of basic science, engineering, and hu-
man health.  

Unmet needs for collecting and curating multicellular data 
Biology is increasingly focused on studying cellular heterogeneity and multicellular systems. Novel experi-
ments, clinical trials, and simulation studies are generating incredible amounts of data on cell behavior, cell-cell 
and cell-matrix interactions, and cellular microenvironmental conditions. These advances are creating exciting 
new opportunities to formulate and test hypotheses, while synthesizing these disparate data sources to gain a 
deeper tissue-level understanding of health and disease.  

However, the deluge of data has pushed existing data sharing and analysis paradigms to their limits. Key in-
sights are effectively hidden in plain sight: tucked away in images, graphs, and tables; divorced from context; 
and inaccessible to computer analysis without significant manual work. While some data are online, much 
more are trapped offline on researchers’ flash drives, manually traded in emails, or inaccessible in private 
cloud storage. This severely limits data sharing, collaboration, and post-publication analyses that can offer new 
and unexpected insights.   

There have been significant efforts to address these issues, but so far they have focused on describing ge-
nomic and molecular data (e.g., the Gene Ontology [1] for genetic data) or mathematical models (e.g., the Sys-
tems Biology Markup Language [2] for cell signaling models). None of these efforts have created a fixed data 
format for interchanging multicellular data or collected cell phenotype insights from many labs into shared, 
community-curated libraries with a uniform format. And while vast troves of experimental and clinical image 
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data are available online to drive machine learning, we lack a standardized way to record extracted features, 
such as cell positions, sizes, shapes, and immunohistochemical stain statuses. Moreover, our lack of standard-
ized data prevents us from directly linking between experimental and computational model systems, while also 
hindering our efforts to reconcile experimental and simulation results against clinical knowledge. With stand-
ardized data, would could directly couple experimental, computational, and clinical workflows, develop unified 
tools, and exchange insights. This would be bring key aspects of information science to multicellular biology, 
while facilitating reproducibility. See Figure. 1.  

To address these unmet needs, we developed the MultiCellular Data Standard (MultiCellDS), a community-
driven project [3] that facilitates the quantitative recording of the cellular microenvironment and phenotype in 
the form of digital cell lines and digital snapshots. Community-curated, centralized repositories of standardized 
data will pave the way to new data workflows and pipelines that will revolutionize the way we collaborate and 
learn in multicellular biology. By sharing standardized data—with formats that work for experimental, clinical, 
and computational models systems—we can work together to bridge the knowledge divide between molecular 
cell biology and the phenotypes of multicellular systems, tissues, organisms, and patients.  

[Figure 1: Integration of experimental, clinical, and computational workflows with standardized data] 

[Box 1: Glossary of key terms (see below)] 

A community-driven project 
To jump start the project, a core team—consisting of a cancer biologist, a mathematical modeler, data scien-
tists, and a medical oncologist—drafted a working prototype of the data standard. To ensure that the standard 
could adapt to the diverse needs of the experimental, computational, and clinical communities, we assembled 
a group of invited “reviewers” (over thirty members spanning multiple disciplines, at institutions in the US and 
Europe) to critique the nascent standard and suggest improvements in three rounds of review. The invited re-
views were supplemented by public talks and reviews to get feedback from the broader research community. 
The core team was responsible for leading the reviews, incorporating all feedback, and coordinating data and 
software contributions. This structure—a core team accountable to a skilled, multidisciplinary panel of review-
ers—helped to balance the needs for extensive community feedback and involvement with the needs for fast 
and iterative development.  

Use cases to drive development 
Each round of review was driven by a set of use cases: to represent cell phenotype measurements as digital 
cell lines (round 1); to record simulation and experimental data as digital snapshots (round 2); and to record 
segmented pathology data and de-identified clinical annotations in digital snapshots (round 3). These terms 
are defined in Box 1 and the descriptions below. Each round of review iteratively refined the data standard until 
we could complete the use cases. This helped ensure that the standard was not just a theoretical dictionary of 
terms, but a workable data language. Tackling unexpected problems suggested new data elements and 
metadata that could never have been anticipated purely through brainstorming and committee meetings. As a 
side effect, this process helped populate an initial “public library” of data, while driving software development 
for data analysis, visualization, and simulation.  

Digital snapshots: flash-freezing multiscale biology 
Biological systems are typically observed or simulated at discrete, sampled times. Digital snapshots allow us to 
“freeze” these systems at a single time point and systematically record their states. Each snapshot begins with 
metadata: information on who generated the data and how (provenance) and other relevant details. A snap-
shot then records the microenvironmental context (e.g., oxygen concentration), either spatially or as average 
values. The snapshot closes with the multicellular data: e.g. cell positions, their phenotypes (at scales ranging 
from receptor status to gross behavior and morphology), and their types, if known (Figure 2). We use the same 
data elements for in vitro, in vivo, and in silico systems to facilitate interdisciplinary work.  

[Figure 2. Digital snapshot overview] 
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Digital cell lines: putting cell phenotype in context  
By analyzing time series of digital snapshots, we can quantitate cell phenotype and correlate it with microenvi-
ronmental conditions. A digital cell line collects such measurements for a single cell type as phenotype da-
tasets, allowing systematic recording of cell behavior in a single microenvironmental context (e.g., under 
normoxic culture conditions). To better systemize our current knowledge while exposing missing data, we clus-
ter cell phenotype in several functional groups: cell cycling, cell death, mechanics, adhesion, motility, pharma-
codynamics, secretion and uptake processes, and cell size/mass/morphology. A digital cell line can contain 
many phenotype datasets if it has been studied in many conditions, and each phenotype dataset can expand 
as our knowledge increases. Each phenotype dataset is matched to a description of the microenvironmental 
context, and it can be extended to embed any scale of data, such as “omics” data (Figure 3).  
 
[Figure 3: Digital cell line overview] 
 
[Box 2: Versioning, collections, and curation.] 

A public library of digital cell lines and tissue snapshots 
While testing and refining the data standard, we nucleated a “public library” of open data. To test whether digi-
tal cell lines could work beyond human cancer cell lines, we created digital cell lines for murine lymphoma, en-
dothelial cells (to demonstrate highly motile, non-cancerous cells), yeast (our first non-mammalian cells), and 
bacteria (our first prokaryotic cell lines). Beyond “standardized” cell lines like MCF-7, we also created patient-
derived digital cell lines for glioblastoma multiforme [4] and ductal carcinoma in situ of the breast [5]. In the 
course of creating over 200 digital cell lines, we demonstrated that the hierarchical phenotype dataset structure 
could scale from basic (e.g., parameters derived from ATCC culture protocol documents [6]) to extremely de-
tailed (e.g., MCF-10A and MDA-MB-231 lines derived from a multi-institution study [7]). We also seeded the 
library with digital snapshots, including reference cancer simulation datasets from [8] and [9] and segmented 
breast cancer pathology images [10], including patient clinical annotations. Over the next several years, we 
plan to drastically extend this public library to include segmented TCGA pathology data [11] and segmented 
mouse liver data [12]. This entire library—stored in a centralized repository called MultiCellDB (multicellular 
database; see http://portals.MultiCellDS.org)—is freely available under the CC BY 4.0 license.  

Incentivizing good behavior: Rewarding contribution via attribution  
There are three major types of contributions for community-curated data in MultiCellDB: generating the original 
data or measurements; performing data analysis or transformation; and actively curating the data (potentially 
from many sources!). All three types of contributions are essential, and they should be tracked in the prove-
nance for reproducibility, transparency, and proper attribution. Moreover, the software tools used for data anal-
yses and transformations need to be properly recorded. When a digital cell line or snapshot is used in a later 
publication, it is essential to record this chain of contributions, not only for reproducibility, but also to incentivize 
future contributions. Succinctly citing a chain of contributions is challenging, but we propose the following form:  
 

“We used digital cell line MCF-7 [refs1] version n1 (MultiCellDB id1), created with data and con-
tributions from [refs2,refs3].”  

Here, refs1 cites the publications or preprints that created the first and current version of the digital cell line, 

refs2 cites the original data source(s), and refs3 cites tools, software, and post-publication analyses or proto-

cols used to transform the original data (refs2) into MultiCellDS data elements. It is also important to cite a 

fixed version of the digital cell to ensure that future replication studies use the same data. These are recorded 

as the version number (n1) and a unique identifier (id1). (Box 2). Additional details on provenance and other 

metadata tracking can be found in the further resource documents below.   

The payoffs for sharing data in a common format 
There are additional benefits to having a common format for multicellular data. With a fixed target of data ele-
ments, software developers across labs can work together to write data analysis, visualization, and simulation 
software that can be connected into sophisticated, reproducible research pipelines (Figure 4). This should lead 
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to higher-quality software with development costs spread over more labs, while allowing researchers to cross-
validate their results in a variety of compatible tools.  

Because MultiCellDS uses the same data elements for experimental, clinical and simulation data, we can even 
use the same tools across disciplines, allowing better integration of experimental data into simulations, and 
more quantitative model validation. Insights in one domain can more readily “cross-pollinate” advances in the 
others when the data can be seamlessly read by the same tools across disciplines. Storing standardized data 
in centralized data repositories helps to archive critical data in the long term, thus improving reproducibility and 
repeatability. Moreover, MultiCellDS contributors can potentially widen their impact with increased data reuse 
and citations.  

[Figure 4: Sample integrated workflows using MultiCellDS data] 

Getting a bird’s eye view of biology with centralized data repositories 
By uniformly collecting cell phenotype knowledge in a centralized repository (MultiCellDB), we gain a unique 
opportunity to take a step back from focused single-lab investigations to compare cell behavior across many 
cell types. This uniform recording will help us to identify conserved behavior as well as contradictory data that 
may point to unknown biology or experimental error. Moreover, we can more readily identify gaps in our 
knowledge, to more systematically plan future experiments.  

Future directions, challenges, and a call to arms 
We have developed a standard to systematically record cell phenotypes, microenvironmental conditions, and 
the state of multicellular systems. In doing so, we created an initial “public library” of digital cell lines and tissue 
snapshots. Building upon this, the community is actively creating an ecosystem of standards-compliant soft-
ware to analyze, visualize, and simulate these shared data. In the near future, multidisciplinary teams will mine 
the shared data repository to formulate new biological hypotheses, encode these into computer models, and 
compare simulation outputs to experimental and clinical data to test and refine the hypotheses. Standardized 
data and shared software tools could accelerate this process, helping to close the gap between the benchtop, 
mathematical models, and the clinic.  

Yet challenges remain. Recording the phenotypes of many cells in snapshots—or of single cell types in digital 
cell lines—falls short of multicellular biology. This is analogous to many actors delivering monologues on a 
shared stage. Drama and biology get interesting when the players interact. We must next characterize cell net-
works, including cell-cell interactions, cell mutations, and cell lineages. These enhancements can be woven 
into MultiCellDS using complementary ontologies, such as the Cell Behavior Ontology [13].  

We must also expand the phenotype datasets to incorporate other critical measurements, such as genomic, 
proteomic, and metabolomics data. Moreover, we must account for the hysteresis in cell phenotype parame-
ters: cells undergoing stresses do not always return to their original phenotypes once the stresses are re-
moved. The community has begun testing ideas to addresses these key facets to multicellular systems biology, 
but broader participation is needed.  

This early groundwork relied heavily upon data scientists and mathematicians to define data elements to char-
acterize cell phenotype, microenvironmental conditions, and metadata. It is time to grow the community. We 
need experts across experimental biology and clinical practice to improve and expand the digital cell lines. We 
need a community discussion on what it means to improve a measurement—how do we know that a new 
measurement of cell motility is better than the old one? This will lead to useful discussions of not just reproduc-
ibility, but quality assurance in experimental pipelines. Over time, it will provide a useful library of “reference 
phenotype values” to help experimentalists to quantitatively compare their findings and separate protocol differ-
ences from genuine biological effects. 

Moving forward, we must ensure that data donation and curation are user-friendly, and that the data standard 
evolves to meet the needs of the community. Just as community encyclopedias rely upon volunteer editors to 
update articles, we need volunteers to transform the scattered treasure of unannotated data into curated, 
standardized data in MultiCellDB. As MultiCellDS grows, we anticipate making the leap from a grassroots effort 
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to a self-sustaining community, where the availability of standardized data and compatible software drives fur-
ther adoption, contributions, new techniques, and community growth. Lastly, it is up to the community to make 
use of the data: to contribute more data; to mine the data for patterns that drive new hypotheses; to test new 
hypotheses in computational, experimental, and clinical models; and to unlock new knowledge that drives sci-
entific progress and yields new therapies and strategies to improve health.  
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Further resources 
The MultiCellDS project website is hosted at http://MultiCellDS.org. A list of MultiCellDB portals, including the 
MultiCellDB reference repository, can be found at http://portals.MultiCellDS.org.  
 
Extra documentation on MultiCellDS includes:  

1. A more detailed “white paper” on the MultiCellDS standard and development process.  
[http://dx.doi.org/10.1101/090456] 

2. User-focused overview of the data standard.  
[https://dx.doi.org/10.6084/m9.figshare.4269254.v1].  

3. List of supported cell cycle representations.  
[https://dx.doi.org/10.6084/m9.figshare.4269263.v1] 

4. Computer-generated documentation on the full standard, based upon the XML schema. 
[https://dx.doi.org/10.6084/m9.figshare.4269269]. 

5. The XML schema that official encodes the data standard.  
[https://dx.doi.org/10.6084/m9.figshare.4269272.v1 and 
https://dx.doi.org/10.6084/m9.figshare.4269275].  

6. OWL ontology.  
[http://MultiCellDS.org/ont/multicellds.owl]. 

7. A protocol to transform DCIS pathology data into patient-derived digital cell lines.  
[https://dx.doi.org/10.6084/m9.figshare.4269248.v1]. 

8. Mathematical models used in the Chaste demonstration of MultiCellDS digital snapshots  
[https://dx.doi.org/10.6084/m9.figshare.4272242]. 

9. Matlab script used to help create ATCC-based digital cell lines  
[https://sourceforge.net/projects/multicellds/files/Tools/ATCC_to_digital_cell_lines/]  

10. Community norms for curation, versioning, and new data elements  
[https://dx.doi.org/10.6084/m9.figshare.4272374.v1].  

11. Current MultiCellDS invited reviewers.  
[http://MultiCellDS.org/Team.php#review_panel] 

12. MultiCellDS invited reviewers (rounds 1-3, through Nov. 2016).  
[https://dx.doi.org/10.6084/m9.figshare.4272197] 

 
All MultiCellDS documentation can be found at http://MultiCellDS.org/Documentation.php.  
 

A list of MultiCellDS-compatible software is maintained at http://software.MultiCellDS.org.  
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Figures, Text boxes, and captions: 

 

 

Figure 1: Integration of experimental, clinical, and computational workflows with standardized data. Standardized 
data formats make it possible to integrate experimental, clinical, and computational workflows, through shared data repos-
itories and standards-compliant software tools. All three workflows share common tasks, such as image analysis, feature 
extraction, and data analysis. By adopting the same data formats, researchers in any workflow can leverage software 
tools and advances developed for the other workflows. Moreover, insights from each workflow could be shared in central-
ized repositories of shared data, potentially allowing new interactions between previously separate research teams and 
workflows.  
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data element a specific measurement (e.g., the radius of a cell nucleus); the smallest unit of data in MultiCellDS 
XML An extensible markup language (similar to HTML used for webpages), which can order data element 

hierarchically to match their relationships in biology 
XML schema A template for XML data, which describes the allowed data elements and how they can be arranged  
metadata Data about the data: extra information such as units, scale, uncertainty, or provenance 
ontology A controlled dictionary of allowed terms  
OWL A standardized ontology file, in the “web ontology language” format 
provenance The history of who created data, who revised it, who maintains it, and where it is published. 
MultiCellDS multicellular data standard 

MultiCellDB  MultiCellDS database 
MultiCellXML MultiCellDS data, written in an XML format 
phenotype dataset A collection of cell phenotype and other measurements, in a single microenvironmental context 
digital cell line A collection of phenotype datasets and key metadata for a single biological cell line or type 
digital snapshot A readout of all cells, their phenotypes, and the microenvironment at a single time 
collection A logical grouping of digital cell lines, digital snapshots, collections, or a combination of these 
 

Box 1: Glossary of key terms and concepts in the MultiCellDS project
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Figure 2: Digital cell line overview. Top left: Main elements in a phenotype dataset include microenvironmental condi-
tions (context) and one or more phenotype measurements, grouped by function. Top right: A digital cell line collects 
metadata and multiple phenotype datasets. Bottom: Many labs can contribute to a digital cell line according to their exper-
tise, while active community curation can mine the scientific literature to fill in the gaps in knowledge. Over time, digital cell 
lines aggregate biological insights from many sources. 
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Figure 3: Digital snapshot overview. A digital snapshot captures metadata including details on the scientists (user 
metadata), cell lines and growth medium used (experimental details), information on the microenvironment such as one or 
more substrates sampled on a mesh, and a list of cells including their positions (state) and phenotypes. This storage para-
digm can be applied to simulation data and segmented pathology images.
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Box 2: Versioning, Collections, and curation. To help with curation and reproducibility, digital cell lines are maintained 
with unique hierarchical classification numbers that increase as the data are changed. Drawing upon good practices from 
version control software in software engineering, digital cell lines can be split (forked) into branches maintained by different 
groups with different strengths and interests, and subsequently re-merged into a master branch to incorporate all the im-
provements. Related digital cell lines (or snapshots) can be bundled into collections to communicate ideas or knowledge 
that span multiple digital cell lines and/or snapshots, such as time series data (many digital snapshots) or patient cohorts 
(many patient-derived digital cell lines and corresponding digital pathology snapshots). These features help MultiCellDS to 
represent the variety and multitude of data expected in multicellular experimental, simulation, and clinical biology.  
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Figure 4: Sample integrated workflows using MultiCellDS data: Using standardized MultiCellDS data can help us to 
integrate experimental, clinical, and computational data in multidisciplinary workflows with unified software.  

A: A biologist uses standard image analysis software to save experimental images as digital snapshots, and then applies 
standard data analysis software to the snapshots to get new insights. New insights are shared in the data repository. 

B: A clinician uses standard image analysis software to save patient imaging as digital snapshots. Standard data analysis 
tools are applied to the digitized patient cohorts to get new insights. The insights are shared in the common repository. 

C: A modeler and a biologist form hypotheses to create a mathematical model, and they download digital snapshots and 
cell lines from the repository to seed the simulation. They analyze the simulation snapshots to gain new insights.  

D: A clinician analyzes a clinical sample as before. A biologist grows a patient-derived cell line from the clinical sample, 
performs experiments, analyzes the data, and creates a patient-specific digital cell line. A modeler uses the patient-de-
rived data to simulate tumor progression under therapy, and sends the predicted prognosis back to the clinician.
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