2,070 research outputs found

    Shifting new media: from content to consultancy, from heterarchy to hierarchy

    Get PDF
    This is a detailed case history of one of London’s iconic new media companies, AMX Studios. Some of the changes in this firm, we assume, are not untypical for other firms in this sector. Particularly we want to draw attention to two transformations. The first change in AMX and in London’s new media industry more generally refers to the field of industrial relations. What can be observed is a shift from a rather heterarchical towards a more hierarchical organized new media industry, a shift from short-term project networks to long-term client dependency. The second change refers to new media products and services. We want to argue for a shift from cool content production towards consultancy and interactive communications solutions

    AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    Get PDF
    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescop

    Towards mapping biodiversity from above: Can fusing lidar and hyperspectral remote sensing predict taxonomic, functional, and phylogenetic tree diversity in temperate forests?

    Get PDF
    Aim: Rapid global change is impacting the diversity of tree species and essential ecosystem functions and services of forests. It is therefore critical to understand and predict how the diversity of tree species is spatially distributed within and among forest biomes. Satellite remote sensing platforms have been used for decades to map forest structure and function but are limited in their capacity to monitor change by their relatively coarse spatial resolution and the complexity of scales at which different dimensions of biodiversity are observed in the field. Recently, airborne remote sensing platforms making use of passive high spectral resolution (i.e., hyperspectral) and active lidar data have been operationalized, providing an opportunity to disentangle how biodiversity patterns vary across space and time from field observations to larger scales. Most studies to date have focused on single sites and/or one sensor type; here we ask how multiple sensor types from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) perform across multiple sites in a single biome at the NEON field plot scale (i.e., 40 m × 40 m).Location: Eastern USA.Time period: 2017– 2018.Taxa studied: Trees.Methods: With a fusion of hyperspectral and lidar data from the NEON AOP, we as-sess the ability of high resolution remotely sensed metrics to measure biodiversity variation across eastern US temperate forests. We examine how taxonomic, functional, and phylogenetic measures of alpha diversity vary spatially and assess to what degree remotely sensed metrics correlate with in situ biodiversity metrics.Results: Models using estimates of forest function, canopy structure, and topographic diversity performed better than models containing each category alone. Our results show that canopy structural diversity, and not just spectral reflectance, is critical to predicting biodiversity.Main conclusions: We found that an approach that jointly leverages spectral properties related to leaf and canopy functional traits and forest health, lidar derived estimates of forest structure, fine-resolution topographic diversity, and careful consideration of biogeographical differences within and among biomes is needed to accurately map biodiversity variation from above

    Optical Spectroscopy of Galactic Cirrus Clouds: Extended Red Emission in the Diffuse Interstellar Medium

    Get PDF
    We present initial results from the first optical spectroscopic survey of high latitude Galactic cirrus clouds. The observed shape of the cirrus spectrum does not agree with that of scattered ambient Galactic starlight. This mismatch can be explained by the presence of Extended Red Emission (ERE) in the diffuse interstellar medium, as found in many other astronomical objects, probably caused by photoluminescence of hydrocarbons. The integrated ERE intensity, I_ERE \approx 1.2 x 10^{-5} erg s^{-1} cm^{-2} sr^{-1}, is roughly a third of the scattered light intensity, consistent with recent color measurements of diffuse Galactic light. The peak of the cirrus ERE (lambda_{0} \sim 6000 AA) is shifted towards short (bluer) wavelengths compared to the ERE in sources excited by intense ultraviolet radiation, such as HII regions (lambda_{0} sim 8000 AA); such a trend is seen in laboratory experiments on hydrogenated amorphous carbon films.Comment: 7 pages, 2 figures. Accepted for publication in ApJ Letter

    A massive proto-cluster of galaxies at a redshift of z {\approx} 5.3

    Get PDF
    Massive clusters of galaxies have been found as early as 3.9 Billion years (z=1.62) after the Big Bang containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter paradigm predict these systems should descend from "proto-clusters" - early over-densities of massive galaxies that merge hierarchically to form a cluster. These proto-cluster regions themselves are built-up hierarchically and so are expected to contain extremely massive galaxies which can be observed as luminous quasars and starbursts. However, observational evidence for this scenario is sparse due to the fact that high-redshift proto-clusters are rare and difficult to observe. Here we report a proto-cluster region 1 billion years (z=5.3) after the Big Bang. This cluster of massive galaxies extends over >13 Mega-parsecs, contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of >4x10^11 solar masses of dark and luminous matter in this region consistent with that expected from cosmological simulations for the earliest galaxy clusters.Comment: Accepted to Nature, 16 Pages, 6 figure

    Together forever? Explaining exclusivity in party-firm relations

    Get PDF
    Parties and firms are the key actors of representative democracy and capitalism respectively and the dynamic of attachment between them is a central feature of any political economy. This is the first article to systematically analyse the exclusivity of party-firm relations. We consider exclusivity at a point in time and exclusivity over time. Does a firm have a relationship with only one party at a given point in time, or is it close to more than one party? Does a firm maintain a relationship with only one party over time, or does it switch between parties? Most important, how do patterns of exclusivity impact on a firm’s ability to lobby successfully? We propose a general theory, which explains patterns of party-firm relations by reference to the division of institutions and the type of party competition in a political system. A preliminary test of our theory with Polish survey data confirms our predictions, establishing a promising hypothesis for future research
    corecore