14 research outputs found

    Subcutaneous nerve stimulation for rate control in ambulatory dogs with persistent atrial fibrillation

    Get PDF
    Background Subcutaneous nerve stimulation (ScNS) damages the stellate ganglion and improves rhythm control of atrial fibrillation (AF) in ambulatory dogs. Objective The purpose of this study was to test the hypothesis that thoracic ScNS can improve rate control in persistent AF. Methods We created persistent AF in 13 dogs and randomly assigned them to ScNS (n = 6) and sham control (n = 7) groups. 18F-2-Fluoro-2-deoxyglucose positron emission tomography/magnetic resonance imaging of the brain stem was performed at baseline and at the end of the study. Results The average stellate ganglion nerve activity reduced from 4.00 ± 1.68 ΌV after the induction of persistent AF to 1.72 ± 0.42 ΌV (P = .032) after ScNS. In contrast, the average stellate ganglion nerve activity increased from 3.01 ± 1.26 ΌV during AF to 5.52 ± 2.69 ΌV after sham stimulation (P = .023). The mean ventricular rate during persistent AF reduced from 149 ± 36 to 84 ± 16 beats/min (P = .011) in the ScNS group, but no changes were observed in the sham control group. The left ventricular ejection fraction remained unchanged in the ScNS group but reduced significantly in the sham control group. Immunostaining showed damaged ganglion cells in bilateral stellate ganglia and increased brain stem glial cell reaction in the ScNS group but not in the control group. The 18F-2-fluoro-2-deoxyglucose uptake in the pons and medulla was significantly (P = .011) higher in the ScNS group than the sham control group at the end of the study. Conclusion Thoracic ScNS causes neural remodeling in the brain stem and stellate ganglia, controls the ventricular rate, and preserves the left ventricular ejection fraction in ambulatory dogs with persistent AF

    Effects of renal sympathetic denervation on the stellate ganglion and brain stem in dogs

    Get PDF
    BACKGROUND: Renal sympathetic denervation (RD) is a promising method of neuromodulation for the management of cardiac arrhythmia. OBJECTIVE: We tested the hypothesis that RD is antiarrhythmic in ambulatory dogs because it reduces the stellate ganglion nerve activity (SGNA) by remodeling the stellate ganglion (SG) and brain stem. METHODS: We implanted a radiotransmitter to record SGNA and electrocardiogram in 9 ambulatory dogs for 2 weeks, followed by a second surgery for RD and 2 months SGNA recording. Cell death was probed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. RESULTS: Integrated SGNA at baseline and 1 and 2 months after RD were 14.0 ± 4.0, 9.3 ± 2.8, and 9.6 ± 2.0 ΌV, respectively (P = .042). The SG from RD but not normal control dogs (n = 5) showed confluent damage. An average of 41% ± 10% and 40% ± 16% of ganglion cells in the left and right SG, respectively, were TUNEL positive in RD dogs compared with 0% in controls dogs (P = .005 for both). The left and right SG from RD dogs had more tyrosine hydroxylase-negative ganglion cells than did the left SG of control dogs (P = .028 and P = .047, respectively). Extensive TUNEL-positive neurons and glial cells were also noted in the medulla, associated with strongly positive glial fibrillary acidic protein staining. The distribution was heterogeneous, with more cell death in the medial than lateral aspects of the medulla. CONCLUSION: Bilateral RD caused significant central and peripheral sympathetic nerve remodeling and reduced SGNA in ambulatory dogs. These findings may in part explain the antiarrhythmic effects of RD

    Antihyperalgesia by α2-GABAA Receptors Occurs Via a Genuine Spinal Action and Does Not Involve Supraspinal Sites

    Get PDF
    Drugs that enhance GABAergic inhibition alleviate inflammatory and neuropathic pain after spinal application. This antihyperalgesia occurs mainly through GABAA receptors (GABAARs) containing α2 subunits (α2-GABAARs). Previous work indicates that potentiation of these receptors in the spinal cord evokes profound antihyperalgesia also after systemic administration, but possible synergistic or antagonistic actions of supraspinal α2-GABAARs on spinal antihyperalgesia have not yet been addressed. Here we generated two lines of GABAAR-mutated mice, which either lack α2-GABAARs specifically from the spinal cord, or, which express only benzodiazepine-insensitive α2-GABAARs at this site. We analyzed the consequences of these mutations for antihyperalgesia evoked by systemic treatment with the novel non-sedative benzodiazepine site agonist HZ166 in neuropathic and inflammatory pain. Wild-type mice and both types of mutated mice had similar baseline nociceptive sensitivities and developed similar hyperalgesia. However, antihyperalgesia by systemic HZ166 was reduced in both mutated mouse lines by about 60% and was virtually indistinguishable from that of global point-mutated mice, in which all α2-GABAARs were benzodiazepine insensitive. The major (α2-dependent) component of GABAAR-mediated antihyperalgesia was therefore exclusively of spinal origin, whereas supraspinal α2-GABAARs had neither synergistic nor antagonistic effects on antihyperalgesia. Our results thus indicate that drugs that specifically target α2-GABAARs exert their antihyperalgesic effect through enhanced spinal nociceptive control. Such drugs may therefore be well-suited for the systemic treatment of different chronic pain conditions

    Brain metabolic network covariance and aging in a mouse model of Alzheimer's disease

    No full text
    INTRODUCTION: Alzheimer's disease (AD), the leading cause of dementia worldwide, represents a human and financial impact for which few effective drugs exist to treat the disease. Advances in molecular imaging have enabled assessment of cerebral glycolytic metabolism, and network modeling of brain region have linked to alterations in metabolic activity to AD stage. METHODS: We performed 18F-FDG positron emission tomography (PET) imaging in 4-, 6-, and 12-month-old 5XFAD and littermate controls (WT) of both sexes and analyzed region data via brain metabolic covariance analysis. RESULTS: The 5XFAD model mice showed age-related changes in glucose uptake relative to WT mice. Analysis of community structure of covariance networks was different across age and sex, with a disruption of metabolic coupling in the 5XFAD model. DISCUSSION: The current study replicates clinical AD findings and indicates that metabolic network covariance modeling provides a translational tool to assess disease progression in AD models.</p

    Hydrocephalus in a rat model of Meckel Gruber syndrome with a TMEM67 mutation

    Get PDF
    Abstract Transmembrane protein 67 (TMEM67) is mutated in Meckel Gruber Syndrome type 3 (MKS3) resulting in a pleiotropic phenotype with hydrocephalus and renal cystic disease in both humans and rodent models. The precise pathogenic mechanisms remain undetermined. Herein it is reported for the first time that a point mutation of TMEM67 leads to a gene dose-dependent hydrocephalic phenotype in the Wistar polycystic kidney (Wpk) rat. Animals with TMEM67 heterozygous mutations manifest slowly progressing hydrocephalus, observed during the postnatal period and continuing into adulthood. These animals have no overt renal phenotype. The TMEM67 homozygous mutant rats have severe ventriculomegaly as well as severe polycystic kidney disease and die during the neonatal period. Protein localization in choroid plexus epithelial cells indicates that aquaporin 1 and claudin-1 both remain normally polarized in all genotypes. The choroid plexus epithelial cells may have selectively enhanced permeability as evidenced by increased Na+, K+ and Cl− in the cerebrospinal fluid of the severely hydrocephalic animals. Collectively, these results suggest that TMEM67 is required for the regulation of choroid plexus epithelial cell fluid and electrolyte homeostasis. The Wpk rat model, orthologous to human MKS3, provides a unique platform to study the development of both severe and mild hydrocephalus

    The 677C \u3e T variant in methylenetetrahydrofolate reductase causes morphological and functional cerebrovascular deficits in mice

    No full text
    Vascular contributions to cognitive impairment and dementia (VCID) particularly Alzheimer\u27s disease and related dementias (ADRDs) are increasing; however, mechanisms driving cerebrovascular decline are poorly understood. Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in the folate and methionine cycles. Variants i

    Data_Sheet_1_Cortical cerebrovascular and metabolic perturbations in the 5xFAD mouse model of Alzheimer’s disease.docx

    No full text
    IntroductionThe 5xFAD mouse is a popular model of familial Alzheimer’s disease (AD) that is characterized by early beta-amyloid (AÎČ) deposition and cognitive decrements. Despite numerous studies, the 5xFAD mouse has not been comprehensively phenotyped for vascular and metabolic perturbations over its lifespan.MethodsMale and female 5xFAD and wild type (WT) littermates underwent in vivo18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging at 4, 6, and 12 months of age to assess regional glucose metabolism. A separate cohort of mice (4, 8, 12 months) underwent “vessel painting” which labels all cerebral vessels and were analyzed for vascular characteristics such as vessel density, junction density, vessel length, network complexity, number of collaterals, and vessel diameter.ResultsWith increasing age, vessels on the cortical surface in both 5xFAD and WT mice showed increased vessel length, vessel and junction densities. The number of collateral vessels between the middle cerebral artery (MCA) and the anterior and posterior cerebral arteries decreased with age but collateral diameters were significantly increased only in 5xFAD mice. MCA total vessel length and junction density were decreased in 5xFAD mice compared to WT at 4 months. Analysis of 18F-FDG cortical uptake revealed significant differences between WT and 5xFAD mice spanning 4–12 months. Broadly, 5xFAD males had significantly increased 18F-FDG uptake at 12 months compared to WT mice. In most cortical regions, female 5xFAD mice had reduced 18F-FDG uptake compared to WT across their lifespan.DiscussionWhile the 5xFAD mouse exhibits AD-like cognitive deficits as early as 4 months of age that are associated with increasing AÎČ deposition, we only found significant differences in cortical vascular features in males, not in females. Interestingly, 5xFAD male and female mice exhibited opposite effects in 18F-FDG uptake. The MCA supplies blood to large portions of the somatosensory cortex and portions of motor and visual cortex and increased vessel length alongside decreased collaterals which coincided with higher metabolic rates in 5xFAD mice. Thus, a potential mismatch between metabolic demand and vascular delivery of nutrients in the face of increasing AÎČ deposition could contribute to the progressive cognitive deficits seen in the 5xFAD mouse model.</p

    Pharmacokinetic, pharmacodynamic, and transcriptomic analysis of chronic levetiracetam treatment in 5XFAD mice: A MODEL‐AD preclinical testing core study

    No full text
    Abstract Introduction Hyperexcitability and epileptiform activity are commonplace in Alzheimer's disease (AD) patients and associated with impaired cognitive function. The anti‐seizure drug levetiracetam (LEV) is currently being evaluated in clinical trials for ability to reduce epileptiform activity and improve cognitive function in AD. The purpose of our studies was to establish a pharmacokinetic/pharmacodynamic (PK/PD) relationship with LEV in an amyloidogenic mouse model of AD to enable predictive preclinical to clinical translation, using the rigorous preclinical testing pipeline of the Model Organism Development and Evaluation for Late‐Onset Alzheimer's Disease Preclinical Testing Core. Methods A multi‐tier approach was applied that included quality assurance and quality control of the active pharmaceutical ingredient, PK/PD modeling, positron emission tomography/magnetic resonance imaging (PET/MRI), functional outcomes, and transcriptomics. 5XFAD mice were treated chronically with LEV for 3 months at doses in line with those allometrically scaled to the clinical dose range. Results Pharmacokinetics of LEV demonstrated sex differences in Cmax, AUC0‐∞, and CL/F, and a dose dependence in AUC0‐∞. After chronic dosing at 10, 30, 56 mg/kg, PET/MRI tracer 18F‐AV45, and 18F‐fluorodeoxyglucose (18F‐FDG) showed specific regional differences with treatment. LEV did not significantly improve cognitive outcomes. Transcriptomics performed by nanoString demonstrated drug‐ and dose‐related changes in gene expression relevant to human brain regions and pathways congruent with changes in 18F‐FDG uptake. Discussion This study represents the first report of PK/PD assessment of LEV in 5XFAD mice. Overall, these results highlighted non‐linear kinetics based on dose and sex. Plasma concentrations of the 10 mg/kg dose in 5XFAD overlapped with human plasma concentrations used for studies of mild cognitive impairment, while the 30 and 56 mg/kg doses were reflective of doses used to treat seizure activity. Post‐treatment gene expression analysis demonstrated LEV dose‐related changes in immune function and neuronal‐signaling pathways relevant to human AD, and aligned with regional 18F‐FDG uptake. Overall, this study highlights the importance of PK/PD relationships in preclinical studies to inform clinical study design. Highlights Significant sex differences in pharmacokinetics of levetiracetam were observed in 5XFAD mice. Plasma concentrations of 10 mg/kg levetiracetam dose in 5XFAD overlapped with human plasma concentration used in the clinic. Drug‐ and dose‐related differences in gene expression relevant to human brain regions and pathways were also similar to brain region–specific changes in 18F‐fluorodeoxyglucose uptake
    corecore