149 research outputs found

    Cortactin Is a Substrate of Activated Cdc42-Associated Kinase 1 (ACK1) during Ligand-induced Epidermal Growth Factor Receptor Downregulation

    Get PDF
    Background Epidermal growth factor receptor (EGFR) internalization following ligand binding controls EGFR downstream pathway signaling activity. Internalized EGFR is poly-ubiquitinated by Cbl to promote lysosome-mediated degradation and signal downregulation. ACK1 is a non-receptor tyrosine kinase that interacts with ubiquitinated EGFR to facilitate EGFR degradation. Dynamic reorganization of the cortical actin cytoskeleton controlled by the actin related protein (Arp)2/3 complex is important in regulating EGFR endocytosis and vesicle trafficking. How ACK1-mediated EGFR internalization cooperates with Arp2/3-based actin dynamics during EGFR downregulation is unclear. Methodology/Principal Findings Here we show that ACK1 directly binds and phosphorylates the Arp2/3 regulatory protein cortactin, potentially providing a direct link to Arp2/3-based actin dynamics during EGFR degradation. Co-immunoprecipitation analysis indicates that the cortactin SH3 domain is responsible for binding to ACK1. In vitro kinase assays demonstrate that ACK1 phosphorylates cortactin on key tyrosine residues that create docking sites for adaptor proteins responsible for enhancing Arp2/3 nucleation. Analysis with phosphorylation-specific antibodies determined that EGFR-induced cortactin tyrosine phosphorylation is diminished coincident with EGFR degradation, whereas ERK1/2 cortactin phosphorylation utilized in promoting activation of the Arp2/3 regulator N-WASp is sustained during EGFR downregulation. Cortactin and ACK1 localize to internalized vesicles containing EGF bound to EGFR visualized by confocal microscopy. RNA interference and rescue studies indicate that ACK1 and the cortactin SH3 domain are essential for ligand-mediated EGFR internalization. Conclusions/Significance Cortactin is a direct binding partner and novel substrate of ACK1. Tyrosine phosphorylation of cortactin by ACK1 creates an additional means to amplify Arp2/3 dynamics through N-WASp activation, potentially contributing to the overall necessary tensile and/or propulsive forces utilized during EGFR endocytic internalization and trafficking involved in receptor degradation

    Phosphorylation of the alternative mRNA splicing factor 45 (SPF45) by Clk1 regulates its splice site utilization, cell migration and invasion

    Get PDF
    Alternative mRNA splicing is a mechanism to regulate protein isoform expression and is regulated by alternative splicing factors. The alternative splicing factor 45 (SPF45) is overexpressed in cancer, although few biological effects of SPF45 are known, and few splicing targets have been identified. We previously showed that Extracellular Regulated Kinase 2 (ERK2) phosphorylation of SPF45 regulates cell proliferation and adhesion to fibronectin. In this work, we show that Cdc2-like kinase 1 (Clk1) phosphorylates SPF45 on eight serine residues. Clk1 expression enhanced, whereas Clk1 inhibition reduced, SPF45-induced exon 6 exclusion from Fas mRNA. Mutational analysis of the Clk1 phosphorylation sites on SPF45 showed both positive and negative regulation of splicing, with a net effect of inhibiting SPF45-induced exon 6 exclusion, correlating with reduced Fas mRNA binding. However, Clk1 enhanced SPF45 protein expression, but not mRNA expression, whereas inhibition of Clk1 increased SPF45 degradation through a proteasome-dependent pathway. Overexpression of SPF45 or a phospho-mimetic mutant, but not a phospho-inhibitory mutant, stimulated ovarian cancer cell migration and invasion, correlating with increased fibronectin expression, ERK activation and enhanced splicing and phosphorylation of full-length cortactin. Our results demonstrate for the first time that SPF45 overexpression enhances cell migration and invasion, dependent on biochemical regulation by Clk1

    Metastatic MTLn3 and non-metastatic MTC adenocarcinoma cells can be differentiated by Pseudomonas aeruginosa

    Get PDF
    Cancer patients are known to be highly susceptible to Pseudomonas aeruginosa (Pa) infection, but it remains unknown whether alterations at the tumor cell level can contribute to infection. This study explored how cellular changes associated with tumor metastasis influence Pa infection using highly metastatic MTLn3 cells and non-metastatic MTC cells as cell culture models. MTLn3 cells were found to be more sensitive to Pa infection than MTC cells based on increased translocation of the type III secretion effector, ExoS, into MTLn3 cells. Subsequent studies found that higher levels of ExoS translocation into MTLn3 cells related to Pa entry and secretion of ExoS within MTLn3 cells, rather than conventional ExoS translocation by external Pa. ExoS includes both Rho GTPase activating protein (GAP) and ADP-ribosyltransferase (ADPRT) enzyme activities, and differences in MTLn3 and MTC cell responsiveness to ExoS were found to relate to the targeting of ExoS-GAP activity to Rho GTPases. MTLn3 cell migration is mediated by RhoA activation at the leading edge, and inhibition of RhoA activity decreased ExoS translocation into MTLn3 cells to levels similar to those of MTC cells. The ability of Pa to be internalized and transfer ExoS more efficiently in association with Rho activation during tumor metastasis confirms that alterations in cell migration that occur in conjunction with tumor metastasis contribute to Pa infection in cancer patients. This study also raises the possibility that Pa might serve as a biological tool for dissecting or detecting cellular alterations associated with tumor metastasis

    Cortactin is necessary for E-cadherin–mediated contact formation and actin reorganization

    Get PDF
    Classical cadherin adhesion molecules are key determinants of cell–cell recognition during development and in post-embryonic life. A decisive step in productive cadherin-based recognition is the conversion of nascent adhesions into stable zones of contact. It is increasingly clear that such contact zone extension entails active cooperation between cadherin adhesion and the force-generating capacity of the actin cytoskeleton. Cortactin has recently emerged as an important regulator of actin dynamics in several forms of cell motility. We now report that cortactin is recruited to cell–cell adhesive contacts in response to homophilic cadherin ligation. Notably, cortactin accumulates preferentially, with Arp2/3, at cell margins where adhesive contacts are being extended. Recruitment of cortactin is accompanied by a ligation-dependent biochemical interaction between cortactin and the cadherin adhesive complex. Inhibition of cortactin activity in cells blocked Arp2/3-dependent actin assembly at cadherin adhesive contacts, significantly reduced cadherin adhesive contact zone extension, and perturbed both cell morphology and junctional accumulation of cadherins in polarized epithelia. Together, our findings identify a necessary role for cortactin in the cadherin–actin cooperation that supports productive contact formation

    Planning and Leveraging Event Portfolios: Towards a Holistic Theory

    Get PDF
    This conceptual paper seeks to advance the discourse on the leveraging and legacies of events by examining the planning, management, and leveraging of event portfolios. This examination shifts the common focus from analyzing single events towards multiple events and purposes that can enable cross-leveraging among different events in pursuit of attainment and magnification of specific ends. The following frameworks are proposed: (1) event portfolio planning and leveraging, and (2) analyzing events networks and inter-organizational linkages. These frameworks are intended to provide, at this infancy stage of event portfolios research, a solid ground for building theory on the management of different types and scales of events within the context of a portfolio aimed to obtain, optimize and sustain tourism, as well as broader community benefits

    Cortactin and Crk cooperate to trigger actin polymerization during Shigella invasion of epithelial cells

    Get PDF
    Shigella, the causative agent of bacillary dysentery, invades epithelial cells in a process involving Src tyrosine kinase signaling. Cortactin, a ubiquitous actin-binding protein present in structures of dynamic actin assembly, is the major protein tyrosine phosphorylated during Shigella invasion. Here, we report that RNA interference silencing of cortactin expression, as does Src inhibition in cells expressing kinase-inactive Src, interferes with actin polymerization required for the formation of cellular extensions engulfing the bacteria. Shigella invasion induced the recruitment of cortactin at plasma membranes in a tyrosine phosphorylation–dependent manner. Overexpression of wild-type forms of cortactin or the adaptor protein Crk favored Shigella uptake, and Arp2/3 binding–deficient cortactin derivatives or an Src homology 2 domain Crk mutant interfered with bacterial-induced actin foci formation. Crk was shown to directly interact with tyrosine-phosphorylated cortactin and to condition cortactin-dependent actin polymerization required for Shigella uptake. These results point at a major role for a Crk–cortactin complex in actin polymerization downstream of tyrosine kinase signaling

    Factors Affecting Repeat Visitation and Flow-on Tourism as Sources of Event Strategy Sustainability

    Get PDF
    The sustainability of including medium sized one-time sport events in an event portfolio is examined with reference to the capacity of one such event to stimulate flow-on tourism (i.e. tourism activities beyond the event but around the time of the event), a desire to return to the destination, and positive word-of-mouth. Relationships among four motives (socialising, escape, learning about the destination, and learning about athletics), identification with the event (self and social identity), previous visitation to the host destination, information search, tourism activities, and likelihood of recommending and/or returning to the host destination were examined for four categories of attendees at the Pan American Junior Athletics Championships: primary purpose spectators, casual spectators, athletes, and non-athlete participants. All four categories of attendee engaged in some information search and participated in flow-on tourism, but to a low degree. Information search fostered flow-on tourism. Classic tourism activities (e.g. sightseeing, visiting museums) were motivated by a desire to learn about the destination, and encouraged future visitation and likelihood of recommendation. It is concluded that medium-sized one-time sport events can play a sustainable role in event portfolios, but their efficacy requires greater integration of destination experiences with the event. It is suggested that future work should examine the means to cultivate that integration, including creation of more effective alliances between destination marketers and event organizers

    Cortactin is necessary for E-cadherin–mediated contact formation and actin reorganization

    Get PDF
    Classical cadherin adhesion molecules are key determinants of cell–cell recognition during development and in post-embryonic life. A decisive step in productive cadherin-based recognition is the conversion of nascent adhesions into stable zones of contact. It is increasingly clear that such contact zone extension entails active cooperation between cadherin adhesion and the force-generating capacity of the actin cytoskeleton. Cortactin has recently emerged as an important regulator of actin dynamics in several forms of cell motility. We now report that cortactin is recruited to cell–cell adhesive contacts in response to homophilic cadherin ligation. Notably, cortactin accumulates preferentially, with Arp2/3, at cell margins where adhesive contacts are being extended. Recruitment of cortactin is accompanied by a ligation-dependent biochemical interaction between cortactin and the cadherin adhesive complex. Inhibition of cortactin activity in cells blocked Arp2/3-dependent actin assembly at cadherin adhesive contacts, significantly reduced cadherin adhesive contact zone extension, and perturbed both cell morphology and junctional accumulation of cadherins in polarized epithelia. Together, our findings identify a necessary role for cortactin in the cadherin–actin cooperation that supports productive contact formation

    Expression and Subcellular Localization of Mammalian Formin Fhod3 in the Embryonic and Adult Heart

    Get PDF
    The formin family proteins play pivotal roles in actin filament assembly via the FH2 domain. The mammalian formin Fhod3 is highly expressed in the heart, and its mRNA in the adult heart contains exons 11, 12, and 25, which are absent from non-muscle Fhod3 isoforms. In cultured neonatal cardiomyocytes, Fhod3 localizes to the middle of the sarcomere and appears to function in its organization, although it is suggested that Fhod3 localizes differently in the adult heart. Here we show, using immunohistochemical analysis with three different antibodies, each recognizing distinct regions of Fhod3, that Fhod3 localizes as two closely spaced bands in middle of the sarcomere in both embryonic and adult hearts. The bands are adjacent to the M-line that crosslinks thick myosin filaments at the center of a sarcomere but distant from the Z-line that forms the boundary of the sarcomere, which localization is the same as that observed in cultured cardiomyocytes. Detailed immunohistochemical and immuno-electron microscopic analyses reveal that Fhod3 localizes not at the pointed ends of thin actin filaments but to a more peripheral zone, where thin filaments overlap with thick myosin filaments. We also demonstrate that the embryonic heart of mice specifically expresses the Fhod3 mRNA isoform harboring the three alternative exons, and that the characteristic localization of Fhod3 in the sarcomere does not require a region encoded by exon 25, in contrast to an essential role of exons 11 and 12. Furthermore, the exon 25-encoded region appears to be dispensable for actin-organizing activities both in vivo and in vitro, albeit it is inserted in the catalytic FH2 domain
    corecore