1,129 research outputs found

    Effects of Pseudostreamer Boundary Dynamics on Heliospheric Field and Wind

    Get PDF
    Interchange reconnection has been proposed as a mechanism for the generation of the slow solar wind, and a key contributor to determining its characteristic qualities. In this paper we study the implications of interchange reconnection for the structure of the plasma and field in the heliosphere. We use the Adaptively Refined Magnetohydrodynamic Solver to simulate the coronal magnetic evolution in a coronal topology containing both a pseudostreamer and helmet streamer. We begin with a geometry containing a low-latitude coronal hole that is separated from the main polar coronal hole by a pseudostreamer. We drive the system by imposing rotating flows at the solar surface within and around the low-latitude coronal hole, which leads to a corrugation (at low altitudes) of the separatrix surfaces that separate open from closed magnetic flux. Interchange reconnection is induced both at the null points and separators of the pseudostreamer, and at the global helmet streamer. We demonstrate that a preferential occurrence of interchange reconnection in the "lanes" between our driving cells leads to a filamentary pattern of newly opened flux in the heliosphere. These flux bundles connect to but extend far from the separatrix-web (S-Web) arcs at the source surface. We propose that the pattern of granular and supergranular flows on the photosphere should leave an observable imprint in the heliosphere

    StomateTutorℱ: An Introduction to Stomatal Control of Gas Exchange in Plants

    Full text link
    This is a HyperCard implementation which includes Pascal programs. HyperCard, which requires at least 1 Megabyte of memory, must be supplied by the user. The system disk must include the Geneva 10 pt font. When using, open the HyperCard stack StomateTutor which coordinates the remaining files (StomateTutorl-3 and the two Pascal programs). When you run StomateTutor the first time with your file configuration, you must locate the Pore Width and Diffusion applications used in Modules 1 and 2, respectively

    Understanding rostral-caudal auditory cortex contributions to auditory perception

    Get PDF
    There are functional and anatomical distinctions between the neural systems involved in the recognition of sounds in the environment and those involved in the sensorimotor guidance of sound production and the spatial processing of sound. Evidence for the separation of these processes has historically come from disparate literatures on the perception and production of speech, music and other sounds. More recent evidence indicates that there are computational distinctions between rostral and caudal primate auditory cortex that may underlie functional differences in auditory processing. These functional differences may originate from differences in the response times and temporal profiles of neurons in the rostral and caudal auditory cortex, suggesting that computational accounts of primate auditory pathways should focus on the implications of these temporal response differences

    Load-velocity relationships and predicted maximal strength: A systematic review of the validity and reliability of current methods

    Get PDF
    Maximal strength can be predicted from the load-velocity relationship (LVR), although it is important to understand methodological approaches which ensure the validity and reliability of these strength predictions. The aim of this systematic review was to determine factors which influence the validity of maximal strength predictions from the LVR, and secondarily to highlight the effects of these factors on the reliability of predictions. A search strategy was developed and implemented in PubMed, Scopus, Web of Science and CINAHL databases. Rayyan software was used to screen titles, abstracts, and full texts to determine their inclusion/eligibility. Eligible studies compared direct assessments of one-repetition maximum (1RM) with predictions performed using the LVR and reported prediction validity. Validity was extracted and represented graphically via effect size forest plots. Twenty-five eligible studies were included and comprised of a total of 842 participants, three different 1RM prediction methods, 16 different exercises, and 12 different velocity monitoring devices. Four primary factors appear relevant to the efficacy of predicting 1RM: the number of loads used, the exercise examined, the velocity metric used, and the velocity monitoring device. Additionally, the specific loads, provision of velocity feedback, use of lifting straps and regression model used may require further consideration

    The structure of flame filaments in chaotic flows

    Full text link
    The structure of flame filaments resulting from chaotic mixing within a combustion reaction is considered. The transverse profile of the filaments is investigated numerically and analytically based on a one-dimensional model that represents the effect of stirring as a convergent flow. The dependence of the steady solutions on the Damkohler number and Lewis number is treated in detail. It is found that, below a critical Damkohler number Da(crit), the flame is quenched by the flow. The quenching transition appears as a result of a saddle-node bifurcation where the stable steady filament solution collides with an unstable one. The shape of the steady solutions for the concentration and temperature profiles changes with the Lewis number and the value of Da(crit) increases monotonically with the Lewis number. Properties of the solutions are studied analytically in the limit of large Damkohler number and for small and large Lewis number.Comment: 17 pages, 13 figures, to be published in Physica

    Identifying patients at risk for high-grade intra-abdominal hypertension following trauma laparotomy

    Get PDF
    Background: Abdominal Compartment Syndrome (ACS) is an uncommon but deleterious complication after trauma laparotomy. Early recognition of patients at risk of developing ACS is crucial for their outcome. The aim of this study was to compare the characteristics of patients who developed high-grade intra-abdominal hypertension (IAH) (i.e., grade III or IV; intra-abdominal pressure, IAP >20. mmHg) following an injury-related laparotomy versus those who did not (i.e., IAP ≀20. mmHg). Methods: A retrospective analysis of consecutive trauma patients admitted to a level 1 trauma centre in Australia between January 1, 1995 and January 31, 2010 was performed. A comparison was made between characteristics of patients who developed high-grade IAH following trauma laparotomy versus those who did not. Results: A total of 567 patients (median age 31 years) were included in this study. Of these patients 10.2% (58/567) developed high-grade IAH of which 51.7% (30/58) developed ACS. Patients with high-grade IAH were older (p <. 0.001), had a higher Injury Severity Score (p <. 0.001), larger base deficit (p <. 0.001) and lower temperature at admission (p = 0.011). In the first 24. h of admission, patients with high-grade IAH received larger volumes of crystalloids (p <. 0.001), larger volumes of colloids (p <. 0.001) and more units of packed red blood cells (p <. 0.001). Following surgery prolonged prothrombin (p <. 0.001) and partial thromboplastin times (p <. 0.001) were seen. The patients with high-grade IAH suffered higher mortality rates (25.9% (15/58) vs. 12.2% (62/509); p = 0.012). Conclusion: Of all patients who underwent a trauma laparotomy, 10.2% developed high-grade IAH, which increases the risk of mortality. Patients with acidosis, coagulopathy, and hypothermia were especially at risk. In these patients, the abdomen should be left open until adequate resuscitation has been achieved, allowing for definitive surgery. Level of evidence: This is a level III retrospective study

    The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives

    Get PDF
    An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400-2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486-2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local "searchlights” and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processin

    The Imprint of Intermittent Interchange Reconnection on the Solar Wind

    Get PDF
    The solar wind is known to be highly structured in space and time. Observations from Parker Solar Probe have revealed an abundance of so-called magnetic switchbacks within the near-Sun solar wind. In this Letter, we use a high-resolution, adaptive-mesh, magnetohydrodynamics simulation to explore the disturbances launched into the solar wind by intermittent/bursty interchange reconnection and how they may be related to magnetic switchbacks. We find that repeated ejection of plasmoid flux ropes into the solar wind produces a curtain of propagating and interacting torsional Alfvénic waves. We demonstrate that this curtain forms when plasmoid flux ropes dynamically realign with the radial field as they are ejected from the current layer and that this is a robust effect of the 3D geometry of the interchange reconnection region. Simulated flythroughs of this curtain in the low corona reveal an Alfvénic patch that closely resembles observations of switchback patches, but with relatively small magnetic field deflections. Therefore, we suggest that switchbacks could be the solar wind imprint of intermittent interchange reconnection in the corona, provided an in situ process subsequently amplifies the disturbances to generate the large deflections or reversals of radial field that are typically observed. That is to say, our results indicate that a combination of low-coronal and inner-heliospheric mechanisms may be required to explain switchback observations
    • 

    corecore