475 research outputs found

    Putative chemical cue from Gyrodactylus-infected guppies subtly alters behaviour but prior exposure decreases parasite intensity

    Get PDF
    The reliance on chemical communication is well established for evading predation in aquatic systems. Only a few studies have found evidence that chemical cues released from aquatic animals infected with parasites alter behaviour. Furthermore, the link between putative chemical cues and susceptibility to infection has not been studied. The objectives of this study were to determine if exposure to chemical cues from Gyrodactylus turnbulli-infected guppies (Poecilia reticulata) at various times post-infection resulted in altered behaviour of uninfected conspecifics, and if prior exposure to this putative infection cue reduced transmission. Guppies responded to this chemical cue. Those exposed for 10 min to cues released from fish that had been infected for 8 or 16 days spent less time in the centre half of the tank. Continuous exposure to infection cues for 16 days did not alter guppy shoal behaviour but provided partial protection against infection when the parasite was introduced. Shoals exposed to these putative infection cues became infected, but infection intensity increased more slowly and to a lower peak compared with shoals exposed to the control cue. These results indicate that guppies show subtle behavioural responses to infection cues, and that exposure to infection cues reduces the intensity of outbreaks

    Linking Dynamical and Population Genetic Models of Persistent Viral Infection

    Get PDF
    This article develops a theoretical framework to link dynamical and population genetic models of persistent viral infection. This linkage is useful because, while the dynamical and population genetic theories have developed independently, the biological processes they describe are completely interrelated. Parameters of the dynamical models are important determinants of evolutionary processes such as natural selection and genetic drift. We develop analytical methods, based on coupled differential equations and Markov chain theory, to predict the accumulation of genetic diversity within the viral population as a function of dynamical parameters. These methods are first applied to the standard model of viral dynamics and then generalized to consider the infection of multiple host cell types by the viral population. Each cell type is characterized by specific parameter values. Inclusion of multiple cell types increases the likelihood of persistent infection and can increase the amount of genetic diversity within the viral population. However, the overall rate of gene sequence evolution may actually be reduced

    Sphaeridiotrema globulus (Rudolphi, 1814) (Digenea): evidence for two species known under a single name and a description of Sphaeridiotrema pseudoglobulus n.sp.

    Get PDF
    Experimental infection of domestic ducklings with metacercariae believed to be those of Sphaeridiotrema globulus from snails in Quebec, Canada, and New Jersey, U.S.A., revealed that there are two species known under this name. Study of museum specimens has confirmed that the New Jersey specimens represent the original S. globulus: the specimens from Quebec represent a new species. The two species can be separated reliably on the basis of egg size: S. globulus (New Jersey) has smaller eggs (mean 97 ± 4 (SD) μm; range 91–108 μm) than S. pseudoglobulus n.sp. from Quebec (mean 116 ± 5 μm: range 103–125 μm). The cirrus in S. pseudoglobulus has a basal bulb not found in that of S. globulus. There are fewer uterine coils anterior to the acetabulum in S. pseudoglobulus. Comparison of 6-day-old populations of each species revealed several statistically significant differences in the mean size of internal organs. The overall sizes of the body, ovary, and eggs and the width of the posterior testis were greater in S. pseudoglobulus: the pharynx, length of the posterior testis, and number of eggs in the uterus were greater in S. globulus. No differences were found in the size of the oral sucker, acetabulum, or anterior testis

    Development of a neural network model for predicting glucose levels in a surgical critical care setting

    Get PDF
    Development of neural network models for the prediction of glucose levels in critically ill patients through the application of continuous glucose monitoring may provide enhanced patient outcomes. Here we demonstrate the utilization of a predictive model in real-time bedside monitoring. Such modeling may provide intelligent/directed therapy recommendations, guidance, and ultimately automation, in the near future as a means of providing optimal patient safety and care in the provision of insulin drips to prevent hyperglycemia and hypoglycemia

    Short Report: Anopheles darlingi (Diptera: Culicidae) in Panama

    Get PDF
    We report Anopheles darlingi in Darien Province in eastern Panama. Polymerase chain reaction–restriction fragment length polymorphism profiles of the single copy nuclear white gene and sequence comparisons confirmed the presence of 66 specimens of the northern lineage of An. darlingi . The parsimony network depicted 5 CO1 haplotypes in 40 specimens of An. darlingi , which connected through 7–8 mutational steps with sequences from Central and South America. Furthermore, the presence of haplotypes in Biroquera, Darien Province identical to those previously published from northern Colombia suggests that Panamanian samples originated in Colombia. Results of neutrality tests ( R 2 and Fu’s F S ) were not significant and the mismatch distribution was multimodal and did not fit the model of sudden population growth. These findings may indicate a long and stable presence of An. darlingi in eastern Panama.We report Anopheles darlingi in Darien Province in eastern Panama. Polymerase chain reaction–restriction fragment length polymorphism profiles of the single copy nuclear white gene and sequence comparisons confirmed the presence of 66 specimens of the northern lineage of An. darlingi . The parsimony network depicted 5 CO1 haplotypes in 40 specimens of An. darlingi , which connected through 7–8 mutational steps with sequences from Central and South America. Furthermore, the presence of haplotypes in Biroquera, Darien Province identical to those previously published from northern Colombia suggests that Panamanian samples originated in Colombia. Results of neutrality tests ( R 2 and Fu’s F S ) were not significant and the mismatch distribution was multimodal and did not fit the model of sudden population growth. These findings may indicate a long and stable presence of An. darlingi in eastern Panama

    Off-target piRNA gene silencing in Drosophila melanogaster rescued by a transposable element insertion

    Get PDF
    Transposable elements (TE) are selfish genetic elements that can cause harmful mutations. In Drosophila, it has been estimated that half of all spontaneous visible marker phenotypes are mutations caused by TE insertions. Several factors likely limit the accumulation of exponentially amplifying TEs within genomes. First, synergistic interactions between TEs that amplify their harm with increasing copy number are proposed to limit TE copy number. However, the nature of this synergy is poorly understood. Second, because of the harm posed by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit transposition. However, as in all immune systems, there is a cost of autoimmunity and small RNA-based systems that silence TEs can inadvertently silence genes flanking TE insertions. In a screen for essential meiotic genes in Drosophila melanogaster, a truncated Doc retrotransposon within a neighboring gene was found to trigger the germline silencing of ald, the Drosophila Mps1 homolog, a gene essential for proper chromosome segregation in meiosis. A subsequent screen for suppressors of this silencing identified a new insertion of a Hobo DNA transposon in the same neighboring gene. Here we describe how the original Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that this local gene silencing occurs in cis and is dependent on deadlock, a component of the Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE insertions. We further show how the additional Hobo insertion leads to de-silencing by reducing flanking piRNA biogenesis triggered by the original Doc insertion. These results support a model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local determinants of transcription. This may explain complex patterns of off-target gene silencing triggered by TEs within populations and in the laboratory. It also provides a mechanism of sign epistasis among TE insertions, illuminates the complex nature of their interactions and supports a model in which off-target gene silencing shapes the evolution of the RDC complex

    Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum

    Get PDF
    Coronavirus disease 2019 (COVID-19) is a viral infection that can, in severe cases, result in cytokine storm, systemic inflammatory response and coagulopathy that is prognostic of poor outcomes. While some, but not all, laboratory findings appear similar to sepsis-associated disseminated intravascular coagulopathy (DIC), COVID-19- induced coagulopathy (CIC) appears to be more prothrombotic than hemorrhagic. It has been postulated that CIC may be an uncontrolled immunothrombotic response to COVID-19, and there is growing evidence of venous and arterial thromboembolic events in these critically ill patients. Clinicians around the globe are challenged with rapidly identifying reasonable diagnostic, monitoring and anticoagulant strategies to safely and effectively manage these patients. Thoughtful use of proven, evidence-based approaches must be carefully balanced with integration of rapidly emerging evidence and growing experience. The goal of this document is to provide guidance from the Anticoagulation Forum, a North American organization of anticoagulation providers, regarding use of anticoagulant therapies in patients with COVID-19. We discuss in-hospital and post-discharge venous thromboembolism (VTE) prevention, treatment of suspected but unconfirmed VTE, laboratory monitoring of COVID-19, associated anticoagulant therapies, and essential elements for optimized transitions of care specific to patients with COVID-19

    Demasculinization of male guppies increases resistance to a common and harmful ectoparasite

    Get PDF
    Parasites are detrimental to host fitness and therefore should strongly select for host defence mechanisms. Yet, hosts vary considerably in their observed parasite loads. One notable source of inter-individual variation in parasitism is host sex. Such variation could be caused by the immunomodulatory effects of gonadal steroids. Here we assess the influence of gonadal steroids on the ability of guppies (Poecilia reticulata) to defend themselves against a common and deleterious parasite (Gyrodactylus turnbulli). Adult male guppies underwent 31 days of artificial demasculinization with the androgen receptor-antagonist flutamide, or feminization with a combination of flutamide and the synthetic oestrogen 17 β-estradiol, and their parasite loads were compared over time to untreated males and females. Both demasculinized and feminized male guppies had lower G. turnbulli loads than the untreated males and females, but this effect appeared to be mainly the result of demasculinization, with feminization having no additional measurable effect. Furthermore, demasculinized males, feminized males and untreated females all suffered lower Gyrodactylus-induced mortality than untreated males. Together, these results suggest that androgens reduce the ability of guppies to control parasite loads, and modulate resistance to and survival from infection. We discuss the relevance of these findings for understanding constraints on the evolution of resistance in guppies and other vertebrates

    A Mutation in LTBP2 Causes Congenital Glaucoma in Domestic Cats (Felis catus)

    Get PDF
    The glaucomas are a group of diseases characterized by optic nerve damage that together represent a leading cause of blindness in the human population and in domestic animals. Here we report a mutation in LTBP2 that causes primary congenital glaucoma (PCG) in domestic cats. We identified a spontaneous form of PCG in cats and established a breeding colony segregating for PCG consistent with fully penetrant, autosomal recessive inheritance of the trait. Elevated intraocular pressure, globe enlargement and elongated ciliary processes were consistently observed in all affected cats by 8 weeks of age. Varying degrees of optic nerve damage resulted by 6 months of age. Although subtle lens zonular instability was a common feature in this cohort, pronounced ectopia lentis was identified in less than 10% of cats examined. Thus, glaucoma in this pedigree is attributed to histologically confirmed arrest in the early post-natal development of the aqueous humor outflow pathways in the anterior segment of the eyes of affected animals. Using a candidate gene approach, significant linkage was established on cat chromosome B3 (LOD 18.38, θ = 0.00) using tightly linked short tandem repeat (STR) loci to the candidate gene, LTBP2. A 4 base-pair insertion was identified in exon 8 of LTBP2 in affected individuals that generates a frame shift that completely alters the downstream open reading frame and eliminates functional domains. Thus, we describe the first spontaneous and highly penetrant non-rodent model of PCG identifying a valuable animal model for primary glaucoma that closely resembles the human disease, providing valuable insights into mechanisms underlying the disease and a valuable animal model for testing therapies

    SERCA directs cell migration and branching across species and germ layers

    Get PDF
    Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding
    corecore