
vol. 162, no. 1 the american naturalist july 2003

Linking Dynamical and Population Genetic Models of

Persistent Viral Infection

John K. Kelly,1,* Scott Williamson,1 Maria E. Orive,1 Marilyn S. Smith,2 and Robert D. Holt3

1. Department of Ecology and Evolutionary Biology, University of
Kansas, Lawrence, Kansas 66045-7534;
2. Department of Microbiology, University of Kansas Medical
Center, Kansas City, Kansas 66160-7420;
3. Department of Zoology, P.O. Box 118525, University of Florida,
Gainsville, Florida 32611-8525

Submitted July 22, 2002; Accepted December 18, 2002;
Electronically published June 12, 2003

abstract: This article develops a theoretical framework to link
dynamical and population genetic models of persistent viral infection.
This linkage is useful because, while the dynamical and population
genetic theories have developed independently, the biological pro-
cesses they describe are completely interrelated. Parameters of the
dynamical models are important determinants of evolutionary pro-
cesses such as natural selection and genetic drift. We develop ana-
lytical methods, based on coupled differential equations and Markov
chain theory, to predict the accumulation of genetic diversity within
the viral population as a function of dynamical parameters. These
methods are first applied to the standard model of viral dynamics
and then generalized to consider the infection of multiple host cell
types by the viral population. Each cell type is characterized by spe-
cific parameter values. Inclusion of multiple cell types increases the
likelihood of persistent infection and can increase the amount of
genetic diversity within the viral population. However, the overall
rate of gene sequence evolution may actually be reduced.

Keywords: HIV, parasites, rapid evolution, viral dynamic.

In recent years, biologists have become increasingly aware
that evolution frequently occurs over ecological timescales
(Thompson et al. 2001). This is particularly apparent for
infectious diseases, where significant evolution can occur
even within a single infected host. Because of their public
health importance, viral pathogens that establish persistent
infections have been the focus of intensive theoretical
study. This category includes lentiviruses such as the hu-
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man immunodeficiency virus (HIV), hepatitis B and C
viruses, simian immunodeficiency virus (SIV), and equine
infectious anemia virus, among others. These pathogens
undergo many replication cycles and experience rapid evo-
lutionary changes within a single infected host. The sta-
tistical nature of these processes has prompted the devel-
opment of mathematical models. Quantitative models can
generate nonintuitive predictions and suggest new avenues
for experimental investigation (Nowak and Bangham
1996; Levin et al. 1999).

Most of the theory can be classified into two distinct
categories: dynamical models, which characterize the pop-
ulation dynamic interaction between virus and host cells,
and population genetic models, which predict gene se-
quence evolution of the viral population. The dynamical
theory is an adaptation of classical epidemiological models
in which the dynamical variables are the numbers of vi-
rions (free viral particles) and the numbers of cells, both
infected and uninfected, of various types. These models
have been used to predict the conditions for the estab-
lishment of infection, the quantitative responses to anti-
viral drug therapy, and the causes of disease progression
(Perelson 1989, 2002; Nowak et al. 1991; Perelson et al.
1993, 1996; Wodarz and Nowak 1999; Nowak and May
2000). Complementary models have been developed for
bacterial infections (Lipsitch and Levin 1997; Kirschner
2001).

The population genetic theory has developed in re-
sponse to the observation that viral populations undergo
extensive gene sequence evolution within a single infected
individual (Hahn et al. 1986; Burns and Desrosiers 1991;
Simmonds et al. 1991; Shankarappa et al. 1999). The high
mutation rate of lentiviruses in concert with high numbers
of replication cycles in vivo generates a great deal of genetic
variability. For example, the mutation rate of HIV-1 is on
the order of 10�5 to 10�4 per base pair (Preston et al. 1988;
Roberts et al. 1988; Mansky 1996), and an estimated 109

replication cycles occur per day within a single patient (Ho
et al. 1995; Wei et al. 1995; Perelson et al. 1996). Population
genetic models have been developed to investigate the
forces acting on this variability and to estimate a diversity
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of evolutionary parameters (Kelly 1994, 1996; Crandall
1996, 1999; Wolinsky et al. 1996; Leigh Brown 1997; Muse
1999; Rodrigo and Felsenstein 1999; Rodrigo et al. 1999;
Zanotto et al. 1999; Moya et al. 2000; Drummond et al.
2001; Frost et al. 2001a, 2001b).

While the dynamical and population genetic theories
have developed independently to a large extent, the bio-
logical processes they describe are completely interrelated.
Parameters of the dynamical models are important deter-
minants of evolutionary processes such as natural selection
and genetic drift. In particular, gene sequence evolution
is typically modeled as a mutation-limited process. The
rate of evolution along a lineage is directly proportional
to the number of replication cycles per unit time (Kimura
1983; Muse 1999; Rodrigo et al. 1999). For viral infections,
the number of replication cycles per unit time is deter-
mined by dynamical parameters such as the availability of
target cells, the half-life of free virus in the host, the half-
life of infected cells, and the rate of cell-to-cell transmission
of virus (Herz et al. 1996; Perelson et al. 1996).

Our first purpose with this article is to develop an ap-
propriate theoretical framework to link dynamical and
population genetic models. We introduce an analytical
method, based on coupled differential equations, to predict
the accumulation of replication cycles (and hence genetic
diversity) as a function of dynamical parameters. The el-
ements of this framework are developed with a simple
dynamical model and then extended to more complicated
and realistic situations. Here, we consider one important
complication, cellular population structure (CPS). We use
this term to refer to viral infection of multiple cell types
with differing biological properties. Other generalizations
will follow in subsequent articles. We also suggest that the
general approach may be more widely applicable than
host-viral systems because there are many parallels be-
tween infectious disease processes and the dynamics of
other biological systems (Holt 2000).

Infection of multiple distinct cell types in vivo has been
documented in a number of viruses. The primary targets
of HIV are activated CD4� T cells and monocyte/mac-
rophages (Levy 1993), but other related cells in the pe-
ripheral blood and in tissues are also infected. These in-
clude long-lived CD4� memory T cells and dendritic cells
of the monocyte lineage (Chun et al. 1997; Granelli-Pi-
perno et al. 1998). Simian immunodeficiency virus infects
the same range of cell types. Hepatitis B virus infects he-
patocytes in addition to T and B lymphocytes. The im-
portance of CPS lies in the fact that the virus behaves
differently in each cell type.

Basic dynamical parameters vary among cell types. For
example, the death rate of different cell types when infected
with HIV-1 has been estimated using patient responses to
highly active antiretroviral therapy (HAART). The esti-

mated death rate is 0.99/d for activated T cells, 0.049/d
for monocyte/macrophages, and 0.0005/d for “latently in-
fected” memory CD4 T cells (Finzi et al. 1997, 1999).
Latently infected cells harbor the provirus genome but are
not currently expressing viral transcripts. Other important
parameters, such as infectivity or the rate at which infected
cells produce virions, will also generally differ among cell
types. There is accumulating evidence to suggest that CPS
has a range of important consequences for viral dynamics
and evolution (see “Discussion”).

In this article, we develop a model to address a specific
set of questions. How does CPS affect conditions for per-
sistent infection? In other words, does the ability to infect
multiple cell types allow the viral population to persist
under conditions in which infection fails with only one
cell type? When infection is maintained, how does CPS
impact equilibrium levels of virus load and the numbers
of infected cells? Finally, we explore the effect of CPS on
the rate and pattern of viral gene sequence evolution.

Theory

Single Cell Type Model

We first consider the dynamical model with one type of
target cell. The dynamical variables are the number of
virions (q), the number of uninfected cells (n), and the
number of infected cells (n∗). We assume that changes in
these quantities are governed by the system of differential
equations

dq ∗ ∗ ′p nm n � mq � bqn, (1)
dt

dn
p l � mn � bqn, (2)

dt

∗dn ∗ ∗p bqn � m n , (3)
dt

where n is the “burst size,” the number of virions released
when an infected cell dies, m′ is the death rate of virions
(clearance rate), b is the infection constant, l is the input
rate of uninfected cells, m is the death rate of uninfected
cells, and m∗ is the death rate of infected cells. We will
introduce a substantial number of variables in this paper
(a summary is provided in table 1). Throughout, we will
use Roman letters to represent dynamical variables and
Greek letters to represent constants.

Equations (1)–(3) are similar to the basic viral dynamics
model of Nowak and Bangham (1996; see also Nowak and
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Table 1: Index of variables

Constants:
n p burst size, the number of virions produced from an infected cell
l p input rate of uninfected cells
m p death rate of uninfected cells
m∗ p death rate of infected cells
m′ p death rate of virions (clearance rate by host immune system)
b p infection constant
c p decline rate of virions
t p mean recurrence time to the virion state
q p variance in recurrence time to the virion state
�i p proportion of new infections into cell type i

Dynamical variables:
q p number of virions
n p number of uninfected cells
n∗ p number of infected cells
Ui(t) p proportion of viral genomes that are virions with i replication cycles in their ancestry
Ai(t) p proportion of viral genomes that are provirus and have i replication cycles in their ancestry
MU(t) p mean number of ancestral replication cycles among virions
MA(t) p mean number of ancestral replication cycles among provirus
VU(t) p variance in number of ancestral replication cycles among virions
VA(t) p variance in number of ancestral replication cycles among provirus

Note: The constants n, l, m, m∗, and b are subscripted in the multiple cell type model. Each of the dynamical variables,

except q, is subscripted in the multiple cell type model.

May 2000 and references therein). There are two equilib-
rium solutions, and the outcome depends on R0:

bl(n � 1)
R p . (4)0 ′mm

If , the infection fails, leaving only uninfected cellsR ! 10

( , , ). If , the system rapidly∗q p 0 n p 0 n p l/m R 1 10

converges to the following equilibrium:

l(n � 1) m m
q p � p (R � 1), (5)0′m b b

′m l
n p p , (6)

b(n � 1) mR 0

′l mm l∗n p � p (R � 1). (7)0∗ ∗ ∗m bm (n � 1) m R 0

Nowak and May (2000, chap. 3) describe the basic de-
pendencies of this equilibrium on the parameters. Briefly,
the proportion of cells that are infected is positively related
to b but inversely related to m∗. The total number of viral
genomes ( ) increases with b, n, and l but decreases∗q � n
with m, m∗, and m′.

Equations (4)–(7) indicate the conditions necessary for
infection and the abundance of virus during infection but
not the rate that it will evolve. In order to derive predic-

tions relevant to molecular evolution, we need to track the
accumulation of replication cycles within the viral pop-
ulation through time. A new replication cycle is added to
a lineage with each successful cellular infection. This
method of accounting is appropriate for retroviruses such
as HIV because most mutations will occur at this stage of
the life cycle. The error-prone process of reverse tran-
scription is responsible for the conversion of the viral ge-
nome from virion RNA to proviral DNA.

Among virions and provirus at time t, what proportion
have i replication cycles in their ancestry (since the ini-
tiation of infection)? To address this question, we assume
that the viral population is at the dynamical equilibrium
defined by equations (5)–(7). This approximation is jus-
tified by the rapid approach of the system to equilibrium.
We further assume that each infected cell harbors a single
viral genome. While this may not be the case for many
viruses (Potash and Volsky 1998), the theory can be gen-
eralized to allow superinfection of cells. Let fU and fA rep-
resent the proportions of viral genomes in virion and pro-
viral form,

q
f p ,U ∗n � q

∗n
f p p 1 � f , (8)A U∗n � q
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Figure 1: Mean (A) and variance (B) of replication cycle number as a function of time; in this example, and′ ∗m p 1 m p 0.5

respectively, where q and n∗ are given by equations (5)
and (7).

Let Ui(t) denote the proportion of viral genomes that
are virions with i replication cycles in their ancestry. Let

Ai(t) denote the proportion of all viral genomes that exist
as proviral DNA (incorporated in infected cells) and have
i replication cycles in their ancestry. Both series are specific
to a given time t and satisfy the following equation:
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�

U (t) � [U (t) � A (t)] p 1. (9)�0 i i
ip1

There is no zero class for provirus ( ) because allA [t] p 00

infected cells have at least one replication cycle in their
ancestry. The initial virion inoculum declines exponen-
tially due to both successful infection of cells and clearance
by the host immune system:

�ctU (t) p f e , (10)0 U

where

1′ ′c p m � bn p m 1 � . (11)( )n � 1

The right-hand side of equation (11) is obtained by sub-
stituting equation (6) in the central term. The following
differential equations describe changes in Ui(t) and Ai(t)
for :i 1 0

�U (t)i ∗p nm A (t) � cU (t), (12)i i
�t

�A (t)i ∗p bnU (t) � m A (t)i�1 i
�t

′m ∗p U (t) � m A (t). (13)i�1 i
n � 1

The two terms in each differential equation represent the
flow into and out of a given category. The change in Ai(t)
is determined by new infections from virions with i � 1
replication cycles (the inflow) minus the death of infected
cells with i replication cycles (the outflow). The change in
Ui(t) is determined by the influx of new virions from the
death of infected cells in the ith class minus the clearance
of virions from this category.

Equations (12) and (13) are linear differential equations,
and closed form solutions can be found. Unfortunately,
these solutions become increasingly cumbersome and un-
informative as i increases (except in the special case dis-
cussed below). For this reason, it is useful to summarize
the distribution of replication cycles in terms of the mean
and the variance. Let MU(t) denote the mean number of
replication cycles among virions and MA(t) denote the
corresponding mean among provirus at time t :

�
1

M (t) p iU (t),�U if ip0U

�
1

M (t) p iA (t). (14)�A if ip0A

Taking derivatives of equations (14), we obtain the fol-
lowing:

�M (t) fU A ∗p nm M (t) � cM (t), (15a)A U
�t fU

′�M (t) f mA U∗p �m M (t) � [M (t) � 1]. (15b)A U
�t f n � 1A

This is a simple linear system with initial conditions2 # 2
and . These equations can be furtherM (0) p 0 M (0) p 1U A

simplified by noting that n will generally be much greater
than 1. If , then , , and′ ′ ∗ ′n k 1 c � m f � m /(m n � m )A

. Using this approximation, we find∗ ∗ ′f � m n/(m n � m )U

that

�M (t)U ′p m [M (t) � M (t)], (16a)A U
�t

�M (t)A ∗p m [1 � M (t) � M (t)]. (16b)U A
�t

Incorporating the initial conditions, we obtain the solution

′ ∗mm ′ ∗�t(m �m ) ′ ∗M (t) p 1 � [e � 1 � t(m � m )], (17)A ′ ∗ 2(m � m )

′ ∗ ′mm m ′ ∗�t(m �m ) ′ ∗M (t) p (1 � e ) � t(m � m ) . (18)U ′ ∗ 2 ∗[ ](m � m ) m

Equations (17) and (18) are asymptotically linear functions
of t with a common slope . The reciprocal′ ∗ ′ ∗mm /(m � m )
of this slope, , is perhaps the most mean-′ ∗ ′ ∗(m � m )/(mm )
ingful measure of generation time from an evolutionary
perspective.

Let VU(t) denote the variance in replication cycle num-
ber among virions and VA(t) denote the corresponding
variance among provirus:

�
1

2 2V (t) p i U (t) � M (t) ,�U i U[ ]f ip0U

�
1

2 2V (t) p i A (t) � M (t) . (19)�A i A[ ]f ip0A

Using an analysis similar to that leading to equations (17)
and (18), we find that

∗ ′m m ∗ ′ ∗ 2 ′ 2V (t) p {3m m � (m ) � (m )A ∗ ′ 4(m � m )

′ 2 ∗ 2 ′ ∗� t[(m ) � (m ) ](m � m ) � K (t)}, (20)1
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Figure 2: Ratio of VU(t) to MU(t), also known as the coefficient of dispersion, at as a function of m′; in this example, ∗t p 100 m p 0.5

where

∗ ′ ′ ∗�2t(m �m ) ′ ∗ t(m �m )K (t) p e {�mm � e1

∗ 2 ′ ∗ ∗ ′ 2 ∗# [(m ) � mm (2 � 4tm ) � (m ) (4tm � 1)]}, (21)

and

∗ ′m m ∗ ′ ′ 2V (t) p {3m m � 2(m )U ∗ ′ 4(m � m )

′ 2 ∗ 2 ′ ∗� t[(m ) � (m ) ](m � m ) � K (t)}, (22)2

where

∗ ′′ �2t(m �m )me ′ ∗′ 2 t(m �m ) ∗ 2K (t) p {�(m ) � e [�3(m )2 ∗m

′ ∗ ∗ ′ 2 ∗� 2mm (1 � 2tm ) � (m ) (1 � 4tm )]}. (23)

K1(t) and K2(t) are transitory terms that disappear rapidly
as t increases.

Both the mean and variance of replication cycle counts
increase in an approximately linear way with time (eqq.
[17]–[23]; fig. 1). A nonlinear increase in MA(t) and MU(t)
occurs immediately following initial infection, but both
functions rapidly converge to parallel lines with M (t) �A

. The increase in VA(t) and VU(t) is∗ ′ ∗M (t) p m /(m � m )U

also approximately linear with t. In the example of figure
1B, VU(t) initially exceeds VA(t) but then rapidly settles to

a lower value. After this transitory period, VA(t) and VU(t)
are parallel lines with ∗ ′ ′ ∗ ′V (t) � V (t) p m m (m � m )/(m �A U

. Thus, if and if∗ 3 ′ ∗m ) V (t) 1 V (t) m 1 m V (t) ! V (t)A U A U

.′ ∗m ! m

The linearity of these relationships implies that we can
assess the effects of the parameters through their effects
on the slopes. The slope for MA(t) and MU(t) increases
with both m′ and m∗, but its value is less than the smaller
value. The slope for VA(t) and VU(t) is smaller than the
slope for MA(t) and MU(t). The ratio of variance to mean,
known as the coefficient of dispersion, is illustrated for
virion replication cycle statistics in figure 2. Note that the
coefficient of dispersion approaches 1 if or if′ ∗m k m

. Under this condition, it is possible to predict the∗ ′m k m

full distribution of replication cycles and not just the first
two moments of this distribution (eqq. [17]–[23]). Con-
sider the case in which . Virion dynamics are es-′ ∗m k m

sentially instantaneous: virions either infect new cells or
are cleared by the immune system immediately after they
are released. Under this condition, proviral DNA accounts
for essentially all viral genomes at any one point in time
( ), and the distribution of replication cycles amongf r 0U

provirus is Poisson:

∗�m t ∗ ie (m t)
A (t) p . (24)i�1 i!

The asymptotic linearity of the mean and variance with
t also suggests that a simpler analysis might suffice to derive
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the slopes associated with MA(t) and VA(t). It is useful to
take a retrospective approach and consider the ancestral
lineage of a virion sampled at time t. This lineage is a
series of intervals with the virus persisting as either pro-
virus or virion. The duration of each interval is a random
variable. Under the assumptions of our model, the amount
of time spent in a state (provirus or virion) before jumping
to the alternate state is exponentially distributed. The mean
time spent as virion is (actually ), and the mean as′1/m 1/c
provirus is .∗1/m

Viewed in this way, lineage history is a simple Mar-
kovian stochastic process. In the language of stochastic
processes, the recurrence time is the amount of time be-
tween successive passages into the same state and is es-
sentially the length of a viral generation. Let t denote the
mean recurrence time and q denote the variance in re-
currence time. For this model, and′ ∗t p 1/m � 1/m q p

. The mean and variance in replication cy-′ 2 ∗ 2(1/m ) � (1/m )
cle number, MU(t) and VU(t), are derived by noting that
replication cycles can be equated to the number of passages
through the virion state in a viral lineage. Asymptotically,
the expected number of passages is , and the variancet/t
in number of passages is (Feller 1968, pp. 320–321).3tq/t
Direct substitution of t and q into these terms yields the
slopes for the mean and variance (eqq. [18]–[22]).

This retrospective approach is not necessary for the sin-
gle cell model. The forward equations are explicit, trac-
table, and yield the slope terms directly. They also provide
information about the transitory period, which the ret-
rospective analysis does not. However, the retrospective
approach is very useful in generalizations of the model. It
allows us to extract analytical results as the forward equa-
tions become increasingly unmanageable. This is illus-
trated below for the multiple cell type model, but the
retrospective approach will also be used in subsequent
papers.

Infection of Multiple Cell Types

It is straightforward to generalize the dynamical model
(eqq. [1]–[3]) to allow infection of multiple cell types. We
allow the parameters n, b, l, m, and m∗ to vary among
target cells. The number of cell types is arbitrary, and a
subscript is added to each variable to distinguish types.
Thus,

dni p l � m n � bn q, (25)i i i i idt

∗dni ∗ ∗p bn q � m n . (26)i i i idt

The differential equation for virion abundance needs to

include contributions from, and losses to, each class of
infected cells:

dq ∗ ∗ ′p m nn � mq � bn q . (27)� �i i i i i( ) ( )dt i i

Like the single cell type model (eqq. [1]–[3]), the infection
will fail if , whereR ! 10

1 b l (n � 1)i i iR p . (28)�0 ′m mi i

The leading term in this sum is the R0 for the single cell
type model (eq. [4]). Since all of the terms are positive,
we can conclude that the ability of the virus to infect
multiple cell types increases the likelihood of maintaining
a persistent infection (all else being equal).

If , the dynamical variables approach equilibriumR 1 10

values. The equilibrium solutions for q, ni, and become∗ni

increasingly cumbersome as the number of cell types in-
creases. The solution for two cell types is a complicated
quadratic (not shown but available on request), and we
have been unable to extract closed form solutions for more
than three cell types. An important simplification is pos-
sible if and for each cell type. Under thesen k 1 bq k mi i i

conditions, most cells are infected before natural death,
and the system approaches the equilibrium

l i∗n ≈ , (29a)i ∗mi

′l min ≈ , (29b)i
b � n li j jj

� n lj jj

q ≈ , (29c)′m

where the summations are taken over all cell types. The
approximate equilibria are surprisingly close to the exact
values under a wide range of parameter values that allow
persistent infection. This may reflect the fact that a high
rate of cellular infection is typical of this class of dynamical
models when (Nowak and May 2000). For sim-R k 10

plicity, we use this approximation for the development of
the population genetic theory (eqq. [30]–[32]). However,
it is straightforward to derive predictions using the exact
dynamical equilibria in cases where the approximation of
equations (29) is not accurate.

A simple way to distill this equilibrium is to consider
the effects of parameter variation on the total number of
viral genomes, . Equations (29) indicate that the∗q �� ni

number of genomes increases linearly with the supply rates
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Figure 3: Markov loop diagram for the multiple cell type model. The
values beside the arrows give the transition probabilities. The values
within the shaded circles are the densities within each category.

of uninfected cells (li). The number of virions increases
linearly with the burst sizes (ni) of infected cells. Numbers
for both virions and provirus in each cell type are inversely
related to their respective death rates (m′ and ). The∗mi

primary effect of the transmission parameters (bi) is on
the number of uninfected cells. As the value of bi increases
for a particular cell type, uninfected cells become infected
more rapidly. Parameter differences between cell types can
substantially change the equilibrium values for the severity
of infection, as measured by the total number of virus
genomes. In the multiple cell type model, the number of
viral genomes depends primarily on the average value of
parameters across cell types, but variability in cell death
rates (either infected or uninfected) can increase the equi-
librium number.

What is the effect of allowing infection of multiple cell
types on the evolution of the virus? More specifically, how
does cellular population structure affect the mean and
variance in replication cycles per viral genome through
time? With regard to this question, the dynamical model
provides critical information concerning the proportion
of viral genomes residing in each cell type and the pro-
portion of virions produced by each cell type. Let �i denote
the latter proportion

∗ ∗m n n l ni i i i i
� p p , (30)i ∗ ∗� m n n � l nj j j j jj j

where the rightmost term relies on the approximation of
equations (29).

It is straightforward to develop differential equations
that are structurally similar to those from the single cell
type model (see appendix). The analysis of these equations
indicates that, after a transitory period, the mean and var-
iance of the replication cycle number increase as a linear
function of t. Virions and provirus from all cell types share
the same slope, although the slope value associated with
the mean will generally differ from that of the variance.
These values can be derived most easily by using the ret-
rospective approach. Figure 3 depicts the Markov process
associated with the multiple cell type model. The average
recurrence time for a virion is

1 1
t p � � , (31)� i′ ∗m mi i

and the variance in recurrence time is

2 2 2

1 1 1
q p � 2 � � � . (32)� �i i′ ∗ ∗( ) ( ) [ ( )]m m mi ii i

Numerical evaluation of the forward equations (see ap-

pendix) confirms that the slope associated with the mean
is equal to and that the variance slope is equal to1/t

(with t and q calculated from eqq. [29]–[32]).3q/t
How does CPS effect the distribution of replication cy-

cles? Equations (31) and (32) indicate that the key variables
are the death rates of infected cells ( ) and the relative∗mi

contributions of each cell type to the virion pool (�i).
Figure 4 illustrates the special case of two cell types. We
consider the effect of variation in among cell types by∗mi

allowing the difference between and to increase while∗ ∗m m1 2

the average is held constant at 0.05. With , the� p 0.51

slope determining the average accumulation of replication
cycles declines as increases (fig. 4A). With∗ ∗m � m � p1 2 1

, this slope is actually highest for intermediate values0.9
of , but its value declines precipitously as the dif-∗ ∗m � m1 2

ference becomes large (fig. 4B). In contrast to the single
cell type model, the variance slope is often greater than
the mean slope. The coefficient of dispersion is greatest
when there is a substantial difference in contributions of
the two cell types to the virion pool ( in fig. 4B).� 1 �1 2

Discussion

We present a theoretical framework composed of two com-
ponents. The dynamic component of the theory predicts
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Figure 4: Linear slope associated with the mean (circles) and variance
(squares) of replication cycle number as a function of the difference in
death rates of infected cells ( ). The average death rate,∗ ∗ ∗m � m (m �1 2 1

, is held constant at 0.05. The value of m′ is 10 in both parts of the∗m )/22

figure, while in A and in B. Note the difference in� p 0.5 � p 0.91 1

scale between A and B.

the numbers of infected and uninfected cells of various
types and the abundance of virions (free viral particles).
Equilibria derived from the dynamical models are essential
inputs to the subsequent population genetic component
of the theory. The latter predicts the distribution of an-
cestral replication cycles within the viral population as a
function of time and the dynamical model parameters.
This linkage between dynamical and population genetic
models provides a natural conceptual bridge between vi-
rological and gene sequence studies. From an empirical
point of view, the value of such a bridge is that it may
suggest ways to bring genetic data to bear on virological
hypotheses and vice versa.

The dynamical variables approach equilibrium values
rapidly in both our single and multiple cell type models.
An important difference between the models is that al-
lowing infection of multiple cell types increases the like-
lihood that the viral population will persist. Consider a
virus whose primary target is cell type 1 with the

following parameter values: , , ,∗n p 900 m p 0.1 m p 0.5
, , and . If type 1 is the only target�4 ′b p 10 l p 10 m p 10

cell, the viral population will not persist because R0 is less
than 1 (eq. [4]). However, the viral population will persist
if it can also infect a second cell type (type 2) with the
following parameter values: , , ∗n p 100 m p 0.01 m p

, , and . Cell type 2 is essential despite�40.05 b p 10 l p 2
the fact that it is only responsible for approximately 2%
of virion production. This example illustrates the subtle
but potentially critical role of latently infected cells in the
persistence of infection.

Latently infected cells may also provide the viral pop-
ulation with a refuge from attack, either from natural im-
mune response or from medical intervention (Zack et al.
1990; Chun et al. 1995; Wolinsky and Learn 1999). An-
tiviral drugs can rapidly reduce HIV plasma virus load by
orders of magnitude (Ho et al. 1995; Wei et al. 1995).
Initial calculations suggested such treatments could erad-
icate HIV-1 from a patient’s system within a few years.
However, it is now clear that the virus can “hide” in latently
infected memory T cells that can persist for many years
(Chun et al. 1995, 1997). These cells, programmed to rec-
ognize rarely encountered antigens, become activated and
permissive to virus replication when they eventually come
into contact with their specific antigen (Blankson et al.
2002).

Evolutionary Predictions

Mutation is the ultimate source of genetic variation, and
replication cycles provide the input of mutations into the
viral population. We thus expect that dynamical param-
eters that influence the evolution of the distribution of
replication cycles will consequently influence the rate and
pattern of gene sequence evolution. To derive numerical
predictions for gene sequence evolution, it is necessary to
combine information regarding the distribution of repli-
cation cycles with a substitution model (see Muse 1999).
However, it is possible to extract some qualitative predic-
tions without imposing a particular substitution model.
This allows a preliminary comparison of our models with
the kind of data that virologists actually collect.

Shankarappa et al. (1999) describe one of the most in-
tensive studies of viral gene sequence evolution within
HIV-infected patients. They tracked viral evolution within
nine HIV-positive men over a 6–12-yr period starting at
the time of seroconversion, which typically occurs within
a few months of initial infection. Minimal gene sequence
variation was observed within the envelope gene in the
seroconversion samples. This allowed Shankarappa et al.
(1999) to define a progenitor sequence for each patient
and determine the extent of divergence from this progen-
itor (number of substitutions) for viruses sampled later
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Figure 5: Mean divergence (A) and coefficient of dispersion (B) for each
sample of sequences are given as a function of the amount of time since
seroconversion for three patients. The statistics were calculated from the
original sequence data downloaded from GenBank (accession numbers
AF137629–AF138163, AF138166–AF138263, AF138305–AF138703;Shan-
karappa et al. 1999). Note that a logarithmic scale is used in B.

during each infection. Figure 5A describes the mean ge-
netic divergence within three of these patients, where each
point denotes a sample of gene sequences. The coefficient
of dispersion, the variance in divergence divided by the
mean, was also calculated for each sample (fig. 5B). How-
ever, because the number of sequences per sample was
limited (about 12 on average), the variance estimates are
subject to large statistical uncertainty.

There is a roughly linear increase in divergence with
time in these patients (fig. 5A), at least over the asymp-
tomatic period of infection (see fig. 3C in Shankarappa et
al. 1999) for the comparable graph for all nine patients).
This pattern has been documented in numerous longi-
tudinal studies (e.g., Balfe et al. 1990; Zhang et al. 1992)
and is consistent with the theory in that both the single
and multiple cell type models predict that the mean num-
ber of replication cycles should increase in an approxi-
mately linear way with time. However, there is some in-
dication that the rate of gene sequence divergence actually
declines in the terminal stages of infection as AIDS de-
velops (Wolfs et al. 1991; Shankarappa et al. 1999). In
population genetic terms, changes in rate of divergence
can be due to either a change in the average number of
replication cycles per unit time (and hence the number of
mutations introduced per unit time) or a change in the
probability that mutations will become fixed in the pop-
ulation (or at least reach high frequencies). A rigorous
comparison of synonymous and nonsynonymous substi-
tution rates over the course of infection may allow us to
distinguish these alternatives.

In the single cell type model, the rate at which repli-
cation cycles accumulate increases with both m′ and m∗ and
is limited primarily by the smaller value (eqq. [17], [18]).
In the multiple cell type model, the rate depends on a
weighted harmonic average of the death rates of infected
cells (eq. [31]), with the weightings determined by the
relative contributions of each cell type to the virion pool
(�i). This kind of averaging implies that the inclusion of
multiple cell types can actually decrease the rate of evo-
lution. This can be illustrated by considering the case of
two cell types (e.g., fig. 4). For HIV infection, type 1 might
denote activated T cells, while type 2 might denote mem-
ory T cells. Inclusion of type 2 cells reduces the mean
numbers of replication cycles because the majority of viral
genomes will have at least one sojourn through cell type
2 in their ancestry. Gene sequence data from HIV does
provide some support for the idea that latent infection
does reduce the overall rate of gene sequence evolution
(Kelly 1996).

The predicted reduction in evolutionary rate may be
counteracted, to some extent, if the infection of multiple
cell types opens new avenues for adaptive evolution of the
viral population. There is clear evidence of genetic differ-

entiation between viral populations inhabiting different
cell types within a single host in both SIV and HIV (Smith
et al. 1993; Poss et al. 1998). Gene sequence evolution will
be accelerated, at least at specific sites, if novel mutations
are required for the virus to infect different cell types (e.g.,
Hwang et al. 1991; Cann et al. 1992). Human immuno-
deficiency virus infections are typically initiated by
macrophage-tropic genotypes that use the CCR5 molecule
as a coreceptor on the cell surface (Zhu et al. 1993;
Wolinsky et al. 1996; Veazey et al. 2000; Meng et al. 2002).
However, T cell tropic genotypes that use a different mol-
ecule as coreceptor (CXCR4), or dual tropic genotypes
that can use either CCR5 or CXCR4, often predominate
later in infection. Changes in the frequencies of these var-
iants may have important implications for disease pro-
gression (Tersmette et al. 1988; Wolinsky and Learn 1999).
More generally, this example illustrates that the relation-
ship between viral evolution and CPS is likely to be both
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complicated and reciprocal. Cellular population structure
should directly impact the rate and pattern of genetic
changes within the viral population, but as these changes
occur, the nature of the interaction between virus and host
cells will also change.

All else equal, the variance among sequences in diver-
gence (e.g., fig. 5B) will increase with the variance in rep-
lication cycle number. In our single cell type model, the
variance is generally smaller than the mean, whereas with
multiple cell types, the variance is typically greater than
the mean (cf. figs. 2, 4). Higher values of VU(t) might serve
to increase genetic variability because the longer-lived cell
type will act to preserve relatively ancient sequences in
much the same way that a seed bank preserves variation
in a plant population (Kelly 1996; Blankson et al. 2002).

The preceding argument is subject to the caveat that
the relationship between genetic variability and variance
statistics such as VU(t) may be rather complicated. There
is more to gene sequence evolution than the mean and
variance of divergence. For example, the number of nu-
cleotide differences between two viruses is more directly
related to the number of replication cycles in the ancestry
of each sequence since their most recent common ancestor
than to VU(t). Genealogical and coalescent approaches
have proven a useful tool for investigating ancestral re-
lations and predicting patterns of extant variation (Rod-
rigo and Felsenstein 1999; Zanotto et al. 1999). Here, we
employed a retrospective approach to derive the slopes
associated with MU(t) and VU(t), but the same methods
can be extended to determine patterns of common an-
cestry. Important variables, such as the viral population
sizes, can be deduced from the dynamical portion of the
model.

Generalizations

The dynamical models described by equations (1)–(3) and
(25)–(27) are highly abstracted from a virological point
of view. By design, we have neglected a number of com-
plications that are undoubtedly important to the inter-
action between host and pathogen. The development of
simple models is an essential precursor to more compli-
cated and realistic models. In this article, we used simple
models to derive the basic machinery for integrating dy-
namical and population genetic theories. The predictions
derived from these simple models also provide an impor-
tant baseline for comparison. We can determine the dy-
namical and evolutionary effects of a particular compli-
cating factor only by comparison to a simpler model that
lacks this complication.

One important complication is tissue level compart-

mentalization of viral population. Our multiple cell type
model considers only one sort of structure. Cells of varying
types will exist within a variety of tissues and tissues within
numerous interconnected systems. As a consequence, the
viral population will be structured at a hierarchy of levels,
and this may impact both viral dynamics and evolution
(Kepler and Perelson 1998; Kirschner et al. 1998; Holt
2000). Genetic differentiation between HIV populations
inhabiting different organs within the same infected pa-
tient has been documented (Epstein et al. 1991), and this
kind of tissue-level compartmentalization may also be rel-
evant to the transmission of the pathogen among host
organisms (Poss et al. 1998; Wolinsky and Learn 1999, pp.
294–295).

A second complication, particularly important to HIV
and other viruses that attack the immune system, concerns
the dynamics of individual cell types. Here, we consider
the simplest possible situation: cells of each type are re-
cruited at a constant rate and removed by either natural
death or viral lysis. In reality, recruitment is likely to be
density dependent for most cell types. In other words, the
number of new cells produced in a given time interval will
depend on the number of cells (infected and uninfected
of various types) currently present. Recruitment may also
depend on other factors, such as the degree of thymus
dysfunction and immune hyperactivation (Carcelain et al.
2001; Douek et al. 2001). Moreover, the cells of the im-
mune system may change from one type to another. For
example, T cells may transform from a resting to an ac-
tivated state and vice versa. Each state would be classified
as a different cell type in this theory because they are likely
to have very different dynamical properties.

Our focus in this article has been within-host viral evo-
lution and population dynamics. These are certainly im-
portant systems, and they allow detailed study of the in-
terplay of ecological and evolutionary dynamics (e.g.,
Fenner and Ratcliffe 1965). However, our basic approach
of linking explicit population dynamics with the distri-
bution of replication events may prove broadly applicable.
Consider the example of leaf-mining insects that feed on
oak trees. An individual oak of the species Quercus gem-
inata can harbor an entire population of the herbivore
Stilbosis quadricustatella. Like the viral pathogens consid-
ered here, the herbivore population undergoes many gen-
erations over the lifespan of an infested oak (the host).
Over the course of these generations, S. quadricustatella
genetically adapts to the characteristics of the host plant
(Mopper et al. 2000) in a process analogous to intrahost
viral evolution. While details of the model would certainly
change when considering leaf miners (or other systems),
we suggest that the approach and its associated analytical
tools may prove useful for a broad range of applications.
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APPENDIX

For the multiple cell type model, we require two subscripts.
Let j denote replication cycle and i denote cell type. The
multiple cell extension of equation (9) is

�

U (t) � U (t) � A (t) p 1, (A1)� �0 j ij[ ]
jp1 i

where Aij(t) is the fraction of viral genomes that are pro-
virus in cell type i that have j replication cycles in their
ancestry. We assume the dynamical variables are at the
approximate equilibrium of equations (29) and that

. The analogs of equations (12) and (13) for then k 1i

multiple cell type model are

�U (t)j ′ ∗p �m U (t) � m n A (t), (A2)�j i i ij
�t i

′�A (t) l mij i ∗p U (t) � m A (t). (A3)j�1 i ij( )�t � n lk kk

The differential equations for mean replication cycle num-
ber are

�M (t) 1U ′ ∗p �mM (t) � m n f M (t), (A4)�U i i Ai Ai
�t f iU

′�M (t) f l mAi U i∗p �m M (t) � [M (t) � 1], (A5)i Ai U( )�t f � n lAi k kk

where

q
f p ,U ∗q �� nii

∗nif p , (A6)Ai ∗q �� nkk

with q and given by equations (29). This is a linear∗ni

system that can be analyzed by standard methods.
The variance of replication cycle numbers can be de-

rived from the equations for second noncentral moments:
and .2 2V (t) p M (t) � [M (t)] V (t) p M (t) � [M (t)]U 2U U Ai 2Ai Ai

The new terms are defined as

�
1

2M (t) p j U (t), (A7)�2U jf jp0U

�
1

2M (t) p j A (t). (A8)�2Ai ijf jp0Ai

The differential equations for these quantities are

�
�M (t) 12U ′ ∗p � mM (t) � f m n M (t), (A9)�2U Ai i i 2Ai

�t f ip1U

′�M (t) f l m2Ai U i∗p � m M (t) �i 2Ai ( )�t f � n lAi k kk

# [M (t) � 2M (t) � 1]. (A10)2U U

Numerical analysis of these equations was used to verify
results from the retrospective analysis (eqq. [31], [32]).
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