906 research outputs found
Computerized Adaptive Tests Detect Change Following Orthopaedic Surgery in Youth with Cerebral Palsy.
BACKGROUND: The Cerebral Palsy Computerized Adaptive Test (CP-CAT) is a parent-reported outcomes instrument for measuring lower and upper-extremity function, activity, and global health across impairment levels and a broad age range of children with cerebral palsy (CP). This study was performed to examine whether the Lower Extremity/Mobility (LE) CP-CAT detects change in mobility following orthopaedic surgery in children with CP.
METHODS: This multicenter, longitudinal study involved administration of the LE CP-CAT, the Pediatric Outcomes Data Collection Instrument (PODCI) Transfer/Mobility and Sports/Physical Functioning domains, and the Timed Up & Go test (TUG) before and after elective orthopaedic surgery in a convenience sample of 255 children, four to twenty years of age, who had CP and a Gross Motor Function Classification System (GMFCS) level of I, II, or III. Standardized response means (SRMs) and 95% confidence intervals (CIs) were calculated for all measures at six, twelve, and twenty-four months following surgery.
RESULTS: SRM estimates for the LE CP-CAT were significantly greater than the SRM estimates for the PODCI Transfer/Mobility domain at twelve months, the PODCI Sports/Physical Functioning domain at twelve months, and the TUG at twelve and twenty-four months. When the results for the children at GMFCS levels I, II, and III were grouped together, the improvements in function detected by the LE CP-CAT at twelve and twenty-four months were found to be greater than the changes detected by the PODCI Transfer/Mobility and Sports/Physical Functioning scales. The LE CP-CAT outperformed the PODCI scales for GMFCS levels I and III at both of these follow-up intervals; none of the scales performed well for patients with GMFCS level II.
CONCLUSIONS: The results of this study showed that the LE CP-CAT displayed superior sensitivity to change than the PODCI and TUG scales after musculoskeletal surgery in children with CP
LGBTQ+ and dental education: Analyzing the present and recommendations for the future
LGBTQ+ populations constitute increasing proportions of children, adolescents, and adults in the United States. Compared to their heterosexual counterparts, this group suffers from health inequities, including oral health. The report “Oral Health: Advances and Challenges” identified the LGBTQ+ community as an underserved population which faces significant barriers in accessing oral health care. Coverage of LGBTQ+ topics in formal education settings in both dental schools and dental hygiene programs is scarce, which contributes to inequities within this group. Increasing curriculum content related to LGBTQ+ populations is of utmost importance to promote optimal patient-provider interactions while improving oral health outcomes. Ensuring equity in oral health care provision will require deliberate, consistent efforts on the part of all stakeholders. Dental and allied dental education programs have made important strides in enhancing equity and inclusion in their institutions by engaging campus groups that support LGBTQ+ populations, creating mentorship programs, and collaborating with non-profit advocacy groups. Such efforts have successfully empowered LGBTQ+ patients, providers, and allies who are committed to further closing the knowledge gap. Most of the research regarding LGBTQ+ inclusion efforts have been done in the medical arena and there is a void in the data available from the dental profession. To fill this void, recommendations are offered that institutions can easily implement to expand LGBTQ+ diversity and inclusion visibility
The heart of Rett syndrome: A quantitative analysis of cardiac repolarization
BACKGROUND: Rett syndrome (RTT) is a developmental encephalopathy disorder that is associated with a high incidence of sudden death presumably from cardiorespiratory etiologies. Electrocardiogram (ECG) abnormalities, such as prolonged heart-rate corrected QT (QTc) interval, are markers of cardiac repolarization and are associated with potentially lethal ventricular arrhythmias. This study investigates the cardiac repolarization characteristics of RTT patients, including QTc and T-wave morphology characteristics.
METHODS: A retrospective quantitative analysis on 110 RTT patients and 124 age and sex-matched healthy controls was conducted.
RESULTS: RTT patients had longer QTc, more abnormal T-wave morphology, and greater heterogeneity of cardiac repolarization parameters compared to controls. Even RTT patients without prolonged QTc had more abnormal ECG and T-wave characteristics than controls. Among RTT patients,
CONCLUSIONS: Cardiac repolarization abnormalities are present in RTT patients, even without long QTc. T-wave morphology is related to RTT genotype and may be predictive of mortality. These findings could be used to help the management and monitoring of RTT patients
Structural and Functional Analysis of a Multimodular Hyperthermostable Xylanase-Glucuronoyl Esterase from Caldicellulosiruptor kristjansonii
The hyperthermophilic bacterium Caldicellulosiruptor kristjansonii encodes an unusual enzyme, CkXyn10C-GE15A, which incorporates two catalytic domains, a xylanase and a glucuronoyl esterase, and five carbohydrate-binding modules (CBMs) from families 9 and 22. The xylanase and glucuronoyl esterase catalytic domains were recently biochemically characterized, as was the ability of the individual CBMs to bind insoluble polysaccharides. Here, we further probed the abilities of the different CBMs from CkXyn10C-GE15A to bind to soluble poly- and oligosaccharides using affinity gel electrophoresis, isothermal titration calorimetry, and differential scanning fluorimetry. The results revealed additional binding properties of the proteins compared to the former studies on insoluble polysaccharides. Collectively, the results show that all five CBMs have their own distinct binding preferences and appear to complement each other and the catalytic domains in targeting complex cell wall polysaccharides. Additionally, through renewed efforts, we have achieved partial structural characterization of this complex multidomain protein. We have determined the structures of the third CBM9 domain (CBM9.3) and the glucuronoyl esterase (GE15A) by X-ray crystallography. CBM9.3 is the second CBM9 structure determined to date and was shown to bind oligosaccharide ligands at the same site but in a different binding mode compared to that of the previously determined CBM9 structure from Thermotoga maritima. GE15A represents a unique intermediate between reported fungal and bacterial glucuronoyl esterase structures as it lacks two inserted loop regions typical of bacterial enzymes and a third loop has an atypical structure. We also report small-angle X-ray scattering measurements of the N-terminal CBM22.1-CBM22.2-Xyn10C construct, indicating a compact arrangement at room temperature
Lower Rotational Inertia and Larger Leg Muscles Indicate More Rapid Turns in Tyrannosaurids Than in Other Large Theropods
Synopsis: Tyrannosaurid dinosaurs had large preserved leg muscle attachments and low rotational inertia relative to their body mass, indicating that they could turn more quickly than other large theropods.
Methods: To compare turning capability in theropods, we regressed agility estimates against body mass, incorporating superellipse-based modeled mass, centers of mass, and rotational inertia (mass moment of inertia). Muscle force relative to body mass is a direct correlate of agility in humans, and torque gives potential angular acceleration. Agility scores therefore include rotational inertia values divided by proxies for (1) muscle force (ilium area and estimates of m. caudofemoralis longus cross-section), and (2) musculoskeletal torque. Phylogenetic ANCOVA (phylANCOVA) allow assessment of differences in agility between tyrannosaurids and non-tyrannosaurid theropods (accounting for both ontogeny and phylogeny). We applied conditional error probabilities a(p) to stringently test the null hypothesis of equal agility.
Results: Tyrannosaurids consistently have agility index magnitudes twice those of allosauroids and some other theropods of equivalent mass, turning the body with both legs planted or pivoting over a stance leg. PhylANCOVA demonstrates definitively greater agilities in tyrannosaurids, and phylogeny explains nearly all covariance. Mass property results are consistent with those of other studies based on skeletal mounts, and between different figure-based methods (our main mathematical slicing procedures, lofted 3D computer models, and simplified graphical double integration).
Implications: The capacity for relatively rapid turns in tyrannosaurids is ecologically intriguing in light of their monopolization of large (\u3e400 kg), toothed dinosaurian predator niches in their habitats
A relocatable ocean model in support of environmental emergencies
During the Costa Concordia emergency case, regional, subregional, and relocatable ocean models have been used together with the oil spill model, MEDSLIK-II, to provide ocean currents forecasts, possible oil spill scenarios, and drifters trajectories simulations. The models results together with the evaluation of their performances are presented in this paper. In particular, we focused this work on the implementation of the Interactive Relocatable Nested Ocean Model (IRENOM), based on the Harvard Ocean Prediction System (HOPS), for the Costa Concordia emergency and on its validation using drifters released in the area of the accident. It is shown that thanks to the capability of improving easily and quickly its configuration, the IRENOM results are of greater accuracy than the results achieved using regional or subregional model products. The model topography, and to the initialization procedures, and the horizontal resolution are the key model settings to be configured. Furthermore, the IRENOM currents and the MEDSLIK-II simulated trajectories showed to be sensitive to the spatial resolution of the meteorological fields used, providing higher prediction skills with higher resolution wind forcing.MEDESS4MS Project; TESSA Project; MyOcean2 Projectinfo:eu-repo/semantics/publishedVersio
Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences
BACKGROUND: Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718).
RESULTS: We identified two loci significantly associated with MT-CN variation: a common variant at the MYB-HBS1L locus (P = 1.6 × 10
CONCLUSION: These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences in cell-type composition and that these differences are causally linked to insulin and related traits
Recommended from our members
Concise total syntheses of (–)-jorunnamycin A and (–)-jorumycin enabled by asymmetric catalysis
The bis-tetrahydroisoquinoline (bis-THIQ) natural products have been studied intensively over the past four decades for their exceptionally potent anticancer activity, in addition to strong gram-positive and -negative antibiotic character. Synthetic strategies toward these complex polycyclic compounds have relied heavily on electrophilic aromatic chemistry, such as the Pictet-Spengler reaction, that mimics their biosynthetic pathways. Herein we report an approach to two bis-THIQ natural products, jorunnamycin A and jorumycin, that instead harnesses the power of modern transition-metal catalysis for the three major bond-forming events and proceeds with high efficiency (15 and 16 steps, respectively). By breaking from biomimicry, this strategy allows for the preparation of a more diverse set of non-natural analogs
GEneSTATION 1.0: A Synthetic Resource of Diverse Evolutionary and Functional Genomic Data for Studying The Evolution of Pregnancy-Associated Tissues and Phenotypes
Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database (http://genestation.org) integrates diverse types of omics data across mammals to advance understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to accelerate the translation of discoveries from model organisms to humans. GEneSTATION is built using tools from the Generic Model Organism Database project, including the biology-aware database CHADO, new tools for rapid data integration, and algorithms that streamline synthesis and user access. GEneSTATION contains curated life history information on pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides a novel platform for comprehensive investigation of the function and evolution of mammalian pregnancy
- …