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Mitochondrial genome copy number
measured by DNA sequencing in human
blood is strongly associated with metabolic
traits via cell-type composition differences
Liron Ganel1,2 , Lei Chen1,2, Ryan Christ1, Jagadish Vangipurapu3, Erica Young1,4, Indraniel Das1, Krishna Kanchi1,
David Larson1,5, Allison Regier1,2, Haley Abel1,2,5, Chul Joo Kang1, Alexandra Scott1,2, Aki Havulinna6,7,
Charleston W. K. Chiang8,9, Susan Service10, Nelson Freimer10, Aarno Palotie6,11,12, Samuli Ripatti6,12,13,
Johanna Kuusisto3,14, Michael Boehnke15, Markku Laakso3,14, Adam Locke1,2, Nathan O. Stitziel1,4,5* and
Ira M. Hall1,2,16*

Abstract

Background: Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly
heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in
blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here,
we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome
(N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718).

Results: We identified two loci significantly associated with MT-CN variation: a common variant at the MYB-HBS1L
locus (P = 1.6 × 10−8), which has previously been associated with numerous hematological parameters; and a
burden of rare variants in the TMBIM1 gene (P = 3.0 × 10−8), which has been reported to protect against non-
alcoholic fatty liver disease. We also found that MT-CN is strongly associated with insulin levels (P = 2.0 × 10−21)
and other metabolic syndrome (metS)-related traits. Using a Mendelian randomization framework, we show
evidence that MT-CN measured in blood is causally related to insulin levels. We then applied an MT-CN polygenic
risk score (PRS) derived from Finnish data to the UK Biobank, where the association between the PRS and metS
traits was replicated. Adjusting for cell counts largely eliminated these signals, suggesting that MT-CN affects metS
via cell-type composition.

Conclusion: These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences
in cell-type composition and that these differences are causally linked to insulin and related traits.

Keywords: Metabolic syndrome, Mitochondrial content, Human genetics, Human genome sequencing, Genome-
wide association studies, Mendelian randomization

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: nstitziel@wustl.edu; ira.hall@yale.edu
1McDonnell Genome Institute, Washington University School of Medicine, St.
Louis, MO, USA
Full list of author information is available at the end of the article

Ganel et al. Human Genomics           (2021) 15:34 
https://doi.org/10.1186/s40246-021-00335-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-021-00335-2&domain=pdf
http://orcid.org/0000-0002-8762-622X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:nstitziel@wustl.edu
mailto:ira.hall@yale.edu


Background
Cardiovascular disease (CVD) is a category comprising
numerous diseases of the circulatory system, including
coronary heart disease, heart failure, stroke, and hyper-
tension [1]. Collectively, these diseases are the leading
cause of mortality both globally and in the USA [1, 2].
Metabolic syndrome (metS), a class of disorders related
to CVD with high prevalence in the USA, includes dys-
lipidemia, obesity, insulin resistance, and prothrombotic
and proinflammatory states [3]. Individuals with metS
have approximately twofold risk of being diagnosed with
CVD over 5 to 10 years and fivefold risk of being diag-
nosed with type 2 diabetes mellitus [4].
There are many reported links between mitochondrial

content and metS-related phenotypes in various tissues,
including adipose [5–7], liver [5, 8, 9], skeletal muscle [5,
10–14], and blood [15–21]. Traits associated with mito-
chondrial (MT) content include CHD, type 2 diabetes,
and metabolic syndrome traits such as insulin sensitiv-
ity/resistance, obesity, and blood triglycerides. However,
these studies have generally been limited by small sam-
ple sizes and low statistical power. This, in addition to
the use of heterogeneous mitochondrial quantification
methods [22], has led to inconsistencies in the literature
about the strength and directions of effect between
mitochondrial content and metS traits. In one large
WGS study of mitochondrial genome copy number
(MT-CN) in 2077 Sardinians, Ding et al. estimated the
heritability of MT-CN at 54% and detected significant
associations between MT-CN and both waist circumfer-
ence and waist–hip ratio, but found no association with
body mass index (BMI) [15]. Another large study (N =
5150) found virtually no evidence of association between
qPCR-measured MT-CN and any of several cardiometa-
bolic phenotypes [23]. The only exception was an in-
verse association with insulin that was identified in one
cohort but did not survive meta-analysis across cohorts.
However, a study of 21870 individuals from 3 cohorts
showed a significant inverse relationship between MT-
CN (measured by microarray probe intensities in two
cohorts and qPCR in the third) and incident cardiovas-
cular disease [24].
Although variations in MT-CN measured from whole

blood can in principle be attributed to either variability
of MT copy number within cells or the cell-type com-
position of the blood (given that different cell types have
varying MT content [25–27]), the literature on this sub-
ject is inconclusive. Using CpG methylation data, a large
(N = 11443), low-coverage (1.7x autosomal; 102x mito-
chondrial) sequencing study of the link between MT-CN
and major depressive disorder using buccal DNA from
Chinese women concluded that variability of MT-CN
from buccal swabs was not due to differences in cell-
type composition [28]. However, this study did not do a

similar experiment in blood. Two small (N = 756 and N
= 400) studies identified an association between MT
content and CHD that they attributed to variable MT-
CN within leukocytes, but they did not directly investi-
gate the possibility of cell-type composition being the
true driver of the association [16, 21]. For brevity, we
will use the term “MT-CN” to refer to the underlying
phenotype reflected by measuring this quantity for the
remainder of this work, with these caveats.
While several studies have found that peripheral blood

MT content is heritable, only a small number of MT-
CN associated loci have been identified [29–31]. In one
of these studies, Curran et al. used linkage analysis in
Mexican Americans to find an MT-CN associated locus
near a marker previously associated with triglyceride
levels [30, 32, 33], providing further indirect evidence for
the link between MT-CN and metabolic syndrome.
Here, we take advantage of large-scale genome, exome,

and array genotype data to investigate the causes and ef-
fects of MT-CN in a large, deeply phenotyped Finnish
cohort. Our results reveal novel links with metabolic
syndrome and provide evidence supporting a causal role
for MT-CN.

Results
Association of MT-CN with metabolic traits
We estimated MT-CN in 4163 individuals from the
METSIM and FINRISK studies based on deep (> 20x
coverage) WGS data. We did so by measuring the mean
coverage depth of reads mapped to the mitochondrial
genome in each sample, and normalizing it to the mean
autosomal coverage (see Methods). We performed batch
normalization separately for METSIM and for two FINR
ISK batches separated by survey years (see Methods).
Each measurement was adjusted for age, age2, and sex,
then inverse rank normalized separately before combin-
ing across batches. We tested the resulting MT-CN esti-
mates for association with 137 quantitative traits that
were collected and normalized according to the proce-
dures described previously [34]. MT-CN was strongly as-
sociated with fat mass (P = 4.48 x 10-16) and fasting
serum insulin (P = 2.02 x 10-21), as well as numerous
additional quantitative traits, many related to metabolic
syndrome (Fig. 1a, Table S1 - Additional File 2). Not-
ably, BMI was significantly associated with MT-CN, des-
pite the fact that Ding et al. did not find evidence of this
association [15]. Since population structure was a poten-
tial confounder in this analysis considering the presence
of mtDNA polymorphisms that might adversely affect
short-read alignment, we included SNP-inferred mito-
chondrial haplogroup as a covariate and reran the tests
(Fig. 1b). The association signals retained significance
even after this adjustment.
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To understand the connection between MT-CN
and more clinically relevant phenotypes, we tested
our MT-CN estimate against Matsuda ISI and dis-
position index (Table 1), which measure insulin sen-
sitivity and secretion, respectively, and were not
included in the initial screen. MT-CN was strongly
associated with both insulin phenotypes. Notably, the
Matsuda ISI signals survived adjustment for fat mass
percentage after excluding diabetic individuals, which
indicates that the association of peripheral blood
MT-CN with insulin sensitivity was independent of
fat mass.

To test for this association signal in a larger cohort,
we developed a method to estimate mitochondrial gen-
ome copy number using 19034 samples with whole ex-
ome sequencing (WES) data from the METSIM and
FINRISK studies that included most of the WGS sam-
ples [34] (see Methods). R2 between WGS-based and
WES-based estimates was 0.445 (Figure S6 - Additional
File 1). Consistent with the WGS-based analysis, WES-
estimated MT-CN was significantly associated with both
fat mass and fasting serum insulin levels, even after re-
moving the samples with WGS data, with identical di-
rections of effect (Table S2 - Additional File 1).

Fig. 1 Cardiometabolic trait associations with MT-CN in WGS data. A Phenome-wide association study of normalized MT-CN against 137
cardiometabolic traits in the 4163 sample data set. Traits are grouped into 17 categories, represented by the color of each bar. The top three
most significant traits are, in order, fasting serum insulin, C-reactive protein, and fat mass. Exact P values and effect estimates, as calculated by
EMMAX, are listed in Supplementary Table S1 (Additional File 2). B Association tests between normalized MT-CN and both fat mass and fasting
serum insulin using WGS data (N = 4163). Results are shown for the EMMAX test and a permutation test in which mitochondrial haplogroups
were adjusted for

Table 1 Associations of normalized MT-CN with disposition index and Matsuda ISI in METSIM. Testing was done by linear regression
using disposition index and Matsuda ISI, respectively, as the dependent variable. P* columns represent the P value from linear
regression with additional adjustment for fat mass. Follow-up measurements were taken at a later time point.

Baseline Follow-up

Number Beta SE P P* Number Beta SE P P*

Disposition index

All subjects 2975 0.094 0.004 3.0 x
10-7

0.0004 2492 0.062 0.004 0.002 0.068

Excludes diabetic subjects at baseline 2842 0.091 0.003 1.3 x
10-6

0.0007 2452 0.067 0.004 0.0009 0.041

Excludes diabetic subjects at baseline and during
follow-up

2453 0.069 0.003 0.0007 0.023 2449 0.067 0.004 0.0009 0.042

Matsuda ISI

All subjects 2975 0.192 0.005 4.3 x
10-26

7.3 x
10-17

2492 0.157 0.006 3.7 x
10-15

8.7 x
10-10

Excludes diabetic subjects at baseline 2842 0.191 0.005 1.0 x
10-24

2.4 x
10-16

2452 0.161 0.006 1.3 x
10-15

3.0 x
10-10

Excludes diabetic subjects at baseline and during
follow-up

2453 0.173 0.005 7.2 x
10-18

5.3 x
10-12

2449 0.16 0.006 1.7 x
10-15

3.8 x
10-10
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Heritability analysis
To assess the extent to which MT-CN is genetically de-
termined, we estimated the heritability of mitochondrial
genome copy number using GREML (Table 2). We ex-
plored two different approaches available: (1) analysis of
the 4149 samples with WGS data that passed quality
control measures, where both nuclear genotypes and
MT-CN are measured directly from the WGS data, and
(2) analysis of the set of 17718 samples with imputed
genotype array data, where MT-CN is estimated from
WES data. Of these, (1) benefited from more accurate
measurement of genotype and phenotype, whereas (2)
had noisier measurements but benefited from larger
sample size. We focused primarily on the METSIM co-
hort, both because of the homogeneity of this cohort
(see Methods) and because the number of FINRISK
samples with WGS data was small.
In the WGS analysis, the GREML-estimated heritabil-

ity of MT-CN in METSIM was 31%, somewhat less than
the 54% value reported in the only prior large-scale
study of peripheral blood MT-CN heritability, which was
based on low-coverage WGS [15]. For comparison, we
used this same approach to estimate heritability of LDL
in METSIM WGS data, which yielded an estimate of
34% with a standard error of 7.9% (Table 3). This is
broadly consistent with prior work [35, 36], including
analysis of the same Finnish sample set using distinct
methods [34] (20.2% heritability). These results show
that mitochondrial genome copy number is a genetically
determined trait with significant heritability, comparable
to that of LDL and other quantitative cardiometabolic
traits [34].
The analysis of imputed METSIM genotypes using

WES-estimated MT-CN yielded an estimated heritability
of 11%, which is much lower than the WGS-based esti-
mate (Table 2). To understand this discrepancy, we re-
peated the GREML analysis with the other two
combinations of phenotype source (WGS vs. WES esti-
mation) and genotype source (WGS vs. imputed array).
When using the WGS-measured phenotype, the esti-
mated heritability decreased only slightly (31% to 27%)

when switching from the WGS to imputed genotypes.
This suggests that the difference in genotyping method
was not the main driver of the observed heritability dis-
parity between the WGS and imputed array datasets.
Conversely, when analyzing the imputed METSIM geno-
types, switching from WGS-measured to WES-measured
MT-CN resulted in a large drop (27% to 11%) in esti-
mated heritability. This suggests that the extra noise in-
herent in WES-based MT-CN estimates was responsible
for the reduction in the GREML-estimated heritability
despite the increased sample size of the imputed array
dataset.

Identification of genetic factors associated with MT-CN
Previous studies have identified three autosomal quanti-
tative trait loci (QTL) reaching genome-wide signifi-
cance for MT-CN in other populations [29, 30]. Another
recent study identified two putative QTLs with suggest-
ive P values [31]. We conducted single-variant GWAS
for MT-CN (see Methods). Analysis of WGS (N = 4149)
and WES (N = 19034) genotypes yielded no variants ex-
ceeding the respective significance thresholds of 5 × 10-8

and 5 × 10-7 (Figure S2 - Additional File 1). However,
despite the increased noise in the WES-measured
phenotype, GWAS of imputed array genotypes from
METSIM (N = 9791) yielded two loci with genome-wide
significant associations, identified by lead markers
rs2288464 and rs9389268 (Fig. 2, Table 4). Of the previ-
ously reported MT-CN QTLs [29–31], we observed an
inconclusive signal at rs445 (P = 0.048) and a significant
signal at rs709591 (P = 1.61 × 10-4), a locus associated
with neutrophil count [37, 38] (Table S11 - Additional
File 1). No significant signal was observed at the other
two single-variant QTLs (Table S11 - Additional File 1)
or the linkage peak identified by Curran et al. (Figure S3
- Additional File 1).
rs9389268 was the only marker that was strongly asso-

ciated with MT-CN in the METSIM analyses of both
WGS and imputed array data (P = 3.24 × 10-8 and P =
1.26 × 10-10, respectively). Although this variant was not
significantly associated with MT-CN in FINRISK (P =

Table 2. GREML heritability estimates in each cohort separately and in joint analysis. All analyses in this table were limited to
sample sets with available imputed genotype data, yielding slightly lower sample sizes than in other tables.

WGS-measured MT-CN WES-measured MT-CN

Number h2 SE Number h2 SE

Joint analysis WGS genotypes 4149 0.17 0.06 3916 0.11 0.06

Imputed genotypes 3916 0.16 0.06 17718 0.09 0.02

METSIM WGS genotypes 3065 0.31 0.07 2974 0.20 0.08

Imputed genotypes 2974 0.27 0.08 9791 0.11 0.03

FINRISK WGS genotypes 1084 0.20 0.22 942 0.24 0.27

Imputed genotypes 942 0.35 0.27 7927 0.08 0.03
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0.788 and P = 0.189 in WGS and imputed array data, re-
spectively) or in a separate random-effects meta-analysis
of both cohorts (P = 0.115), the lack of signal in FINR
ISK is likely the product of lower-quality MT-CN mea-
surements in FINRISK, which displayed heterogeneity

across survey years (Figure S4 - Additional File 1). This
variant is located in an intergenic region between the
MYB and HBS1L genes, is common across many popula-
tions, and is slightly more frequent in Finns compared
with non-Finnish Europeans (gnomAD v3 MAF 34.4%

Table 3 GREML and GREML-LDMS heritability estimates for normalized MT-CN and low-density lipoprotein (LDL) in METS
IM. GREML-LDMS heritability estimates are calculated using PCs 1–10 as fixed-effect covariates. Analyses of imputed array data
exclude samples with WGS data.

Trait Genotype source (phenotype source) Number GREML GREML-LDMS

h2 SE h2 SE

Normalized MT-CN WGS
(WGS-measured MT-CN)

3065 0.31 0.07 0.31 0.09

Imputed array (WES-measured MT-CN) 6789 0.11 0.04 0.14 0.05

LDL WGS 3062 0.34 0.08 0.38 0.10

Imputed array 6787 0.25 0.04 0.32 0.05

Fig. 2 Single-marker genetic associations with MT-CN in imputed array data. A Manhattan plot for a genome-wide association test of normalized,
WES-measured MT-CN using imputed array genotype data from METSIM (N = 9791). Two loci markers reached the genome-wide significance of 5
× 10-8, identified by lead markers rs2288464 and rs9389268. B Quantile–quantile (QQ) plot for the association test shown in A. This plot is
separated by minor allele frequency bin, as indicated by the colors and shapes of the points. C Boxplot showing the distributions of normalized
WES-measured MT-CN in METSIM separated by the number of rs9389268 alternate alleles as detected by imputed array genotyping (N = 9791).
The EMMAX P value for this variant was 1.62 × 10-8 in imputed data
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vs. 26.0%). MYB and HBS1L are hematopoietic regula-
tors [39, 40], and the region between them is known to
be associated with many hematological parameters in-
cluding fetal hemoglobin levels, hematocrit, and erythro-
cyte, platelet, and monocyte counts [41–44]. It has been
suggested that these intergenic variants function by dis-
rupting MYB transcription factor binding and disrupting
enhancer−promoter looping [45]. Conditioning the

METSIM-only imputed array GWAS on rs9399137—a
tag SNP shown to be associated with many of these
hematological parameters [43]—resulted in elimination
of the rs9389268 signal entirely (P = 0.408), suggesting
that the haplotype responsible for the association of
rs9389268 with MT-CN in our data is the same one pre-
viously known to be associated with numerous
hematological phenotypes.

Table 4 Single marker association results for rs2288464 and rs9389268. Analyses of imputed FINRISK array data were
performed with covariates for FINRISK genotyping batch. Bolded results are significant at the appropriate threshold for the given test
(see Methods).

FINRISK METSIM Joint analysis

Number MAF P Beta Number MAF P Beta Number MAF P Beta

rs2288464 Imputed 7927 0.148 0.613 0.0113 9791 0.165 2.55 × 10-9 0.119 17718 0.158 9.77 × 10-7 0.075

WES 9221 0.150 0.376 0.0186 9813 0.166 6.75 × 10-9 0.118 19034 0.158 9.34 × 10-7 0.0734

WGS 1084 0.142 0.383 0.0532 3065 0.161 0.113 0.0561 4149 0.156 0.0655 0.0562

rs9389268 Imputed 7927 0.354 0.189 0.0216 9791 0.347 1.26 × 10-10 0.0973 17718 0.35 1.62 × 10-8 0.0634

WGS 1084 0.351 0.788 0.0121 3065 0.347 3.24 × 10-8 0.150 4149 0.348 7.87 × 10-7 0.115

Fig. 3 Gene-based associations with MT-CN in WES data. A Manhattan plot and quantile–quantile (QQ) plot for a gene-based rare variant
association test of normalized, WES-measured MT-CN using WES data from both METSIM and FINRISK (N = 19034). The red line represents a
Bonferroni significance level of 2.164 × 10-6, as 23105 genes were included in this test. TMBIM1 is the only gene to reach significance at this level.
B QQ plot for the test shown in A. This plot is separated by minor allele frequency bin, as indicated by the colors and shapes of the points. C
Boxplot showing the distributions of normalized WES-measured MT-CN, separated by the number of WES-detected alternate alleles in TMBIM1
with MAF < 0.01 and CADD score > 20 (N = 19034)
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rs2288464 seemed to be a good candidate due to its
location in the 3’ untranslated region of MRPL34, which
codes for a large subunit protein of the mitochondrial
ribosome. While the association signal at this marker
was not observed in the WGS data (P = 0.0655), based
on the observed effect size of this variant in WES and
imputed data as well as the number of WGS datasets
available, there was insufficient power (~ 0.5% at α = 5 ×
10-7) to robustly detect this association in the WGS data
[46].
We next performed rare variant association (RVAS)

analyses using a mixed-model version of SKAT-O [47]
to test for genes in which the presence of high-impact
rare variants might be associated with MT-CN levels
(see Methods; Fig. 3, Table 5). Using WES data, the only
gene passing the Bonferroni-adjusted P value threshold
of 2.16 × 10-6 was TMBIM1 (P = 2.96 × 10-8), a member
of a gene family thought to regulate cell death pathways
[48]. TMBIM1 has been shown to be protective against
non-alcoholic fatty liver disease (NAFLD), progression
to non-alcoholic steatohepatitis, and insulin resistance in
mice and macaques [49]. Interestingly, in our analysis—
in which a burden test was determined to be optimal by
SKAT-O—rare, putatively high-impact variants in
TMBIM1 were associated with a higher MT-CN (Fig.
3c). Higher MT-CN was, in turn, associated with less se-
vere metabolic syndrome, suggesting that TMBIM1 is
actually a risk gene, not a protective one. Thus, the pub-
lished function of TMBIM1 makes it a strong candidate,
although the direction of effect in our data disagreed
with the direction suggested by prior work in model or-
ganisms [49].

Inference of causality in the association between MT-CN
and insulin
To further understand the association between MT-CN
and fasting serum insulin, we employed a Mendelian
randomization (MR) approach with MT-CN as the ex-
posure and insulin as the outcome. Using penalized re-
gression, we leveraged our extensive phenotype data to
build a genetic instrument from a large number of gen-
etic variants and adjust for possible confounders via a
novel approach (see Methods; Fig. 4). We believe this
approach to be more robust to violations of key MR

assumptions than other methods in situations where
limited data are available and few robust genotype-
exposure associations are known. We restricted our ana-
lysis to METSIM samples due to batch effects and in-
consistencies in available quantitative trait data observed
across FINRISK survey years (Figure S4 - Additional File
1. The effect sizes of the instrument in the causality test
for insulin levels are shown in Fig. 4d. We calculated our
instrument using either L1 or L2 regularization. In both
cases, the MT-CN instrument was not a significant pre-
dictor (α = 0.05) of insulin when we constructed our in-
strument from WGS variants, but was significant when
the instrument was constructed from imputed array var-
iants. This was likely due to the larger sample size of the
imputed array data set. However, the effect estimates
were remarkably similar across all four cases. As a result,
inverse-variance weighted meta-analysis across datasets
yielded highly significant P values for both penalties. In
summary, our analysis provided evidence for a signifi-
cant causal role for MT-CN in determining fasting
serum insulin levels that was robust to the choice of re-
gression penalty when building the genetic instrument.
We note that this evidence for causality comes with
some caveats (see Methods).

Replication and biological interpretation
In principle, changes in MT-CN can be caused by
changes in the number of mitochondrial genome copies
within cells or by changes in the blood cell-type com-
position (see Discussion). Based on the association with
rs9389268 and the nuances of the normalization proced-
ure described above, we sought to test the hypothesis
that our MT-CN measurement primarily reflects the
cell-type composition of the blood rather than the num-
ber of mitochondria per cell. Due to the large sample
size and rich phenotypic data available in the UK Bio-
bank, we used imputed array genotype and phenotype
data from this resource (N = 357656) for this purpose
[50].
We first tested cell counts from the UK Biobank

(UKBB) against a polygenic risk score (PRS) for MT-CN
built using the genetic instrument from the Finnish data.
Leukocyte, neutrophil, and platelet counts were all sig-
nificantly associated with MT-CN PRS conditional on

Table 5 Gene-based rare variant association results for TMBIM1. TMBIM1 was the only genome-wide significant gene in the
WES rare-variant association tests of METSIM and the whole dataset. Bolded results are significant at the appropriate threshold for
the given test (see Methods).

FINRISK METSIM Joint analysis

Number Fraction with rare
allele

P Number Fraction with rare
allele

P Number Fraction with rare
allele

P

WES 9221 0.016 1.57 ×
10-3

9813 0.013 1.44 ×
10-6

19034 0.014 2.96 ×
10-8

WGS 1084 0.028 0.489 3065 0.014 0.01 4149 0.013 0.01
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age, age2, and sex (see Methods, Table 6). However,
adjusting for neutrophil counts in the leukocyte regres-
sion eliminated the signal (PRS regression coefficient P
= 0.839), suggesting that the leukocyte count signal was
driven by the effect of neutrophil count. We removed
any high leverage, large residual samples and repeated
the neutrophil and platelet count regressions to ensure
that this result was robust to outliers and found no ap-
preciable change in significance (Table 6). As a result,
we concluded that our MT-CN measurement was sig-
nificantly associated with neutrophil and platelet counts.

Subsequent analyses were performed both with and
without adjustment for these variables, as described
below.
We next tested for associations between MT-CN PRS

and several cardiometabolic phenotypes from the test in
Fig. 1a (see Methods). With the exception of C-reactive
protein, which showed no significant association, all
tested phenotypes showed nominal association with
MT-CN PRS at α = 0.05, with total triglycerides and
HDL being the only traits surviving Bonferroni correc-
tion (Table 7). We interpret this as replication of the

Fig. 4 Mendelian randomization approach and results. A Formulation of the Mendelian randomization causality test. G represents genotypes, Z is
a genetic instrument value constructed from G, X represents ln(MT-CN), Y represents ln(Insulin), and U represents any confounders of the
association between X and Y. The arrow from X to Y is dashed to indicate that although an association is known, the relationship is not known
to be causal. In this formulation, a significant association between Z and Y would provide evidence that X is casual for Y. B Strategy for choosing
variables to adjust for when building Z in order to enforce MR assumptions. A represents those columns of covariate matrix W that are associated
with Y (represented by the solid line between A and Y), and B represents those columns of matrix W that are associated with X conditional on A
(represented by the solid line between B and X). Dashed lines represent possible, but unproven associations. The penalized regression of X on G
used to build Z is adjusted for A and B (with no penalty) in an attempt to prevent any associations between Z and either A or B (represented by
the blue X’s). While an association between B and Y is unlikely (represented by the dashed line between B and Y) because B is not contained in
A, B is still adjusted for in the penalized regression to be as conservative as possible. C Strategy for choosing covariates to adjust for in the
causality test of Y against Z in another attempt to reduce the impact of any remaining associations between Z and assumption-violating
variables. Covariate sets I, II, III, and IV are defined by the presence of known first-order associations (represented by black lines) with Z and Y (see
Methods). Yellow lines represent relationships where a first-order association is not known, but a higher-order association is possible. Covariate
sets II, III, and IV (colored blue) are adjusted for in the causality test because there is at least one first-order association linking them to Z and Y, so
they risk violating MR assumptions 2 or 3. D Results of Mendelian randomization test for causality of MT-CN on fasting serum insulin
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link between mitochondrial genome copy number and
metabolic syndrome in a large, independent data set.
To determine whether there was any association be-

tween MT-CN and metabolic syndrome not mediated
through cell counts, we repeated the tests of cardiometa-
bolic trait association with MT-CN PRS with adjustment
for platelet and neutrophil counts. HDL was the only
trait with a nominal (α = 0.05) association with PRS
under this adjustment, but this signal was not strong
enough to survive Bonferroni correction (Table 7). This
suggests that the associations we observed between MT-
CN and metabolic traits arose simply because MT-CN is
a proxy for platelet and neutrophil count. This was sup-
ported by the fact that direct testing of platelets and
neutrophils against triglycerides, fat mass, and HDL
yielded remarkably significant associations, which sur-
vived post hoc removal of high-leverage, high-residual
outlier samples (Table S3 - Additional File 1). This evi-
dence for MT-CN as a proxy for platelet and neutrophil
counts strongly suggests that the causal relationship ob-
served in the Mendelian randomization experiment (see
above) in fact represents a causative role for neutrophils
and platelet counts in setting serum insulin levels.
Given the strong observed associations between blood

cell count phenotypes and MT-CN PRS, we used these
blood phenotypes to seek replication of the genetic

associations detected in Finnish data. Using imputed
UKBB genotype data, we tested the expected alternate
allele dosage of both rs2288464 and rs9389268 against
the same blood cell traits mentioned above, using linear
regression (Table S4 - Additional File 1; expected alter-
nate allele dosage was calculated from genotype call
probabilities as DS = P(0/1) + 2P(1/1)). As expected given
its known associations with multiple hematological pa-
rameters (see above), rs9389268 showed strong associa-
tions with all tested blood cell phenotypes. rs2288464
was not significantly associated with any of the five phe-
notypes after correction for multiple testing, although a
nominal association was detected with total leukocyte
count. This further strengthens our belief that
rs9389268 is truly associated with MT-CN through
blood cell composition. We also tested TMBIM1 against
the same blood cell traits in UKBB using SKAT-O [47],
and found no significant associations (Table S4 - Add-
itional File 1). This may mean that TMBIM1 affects
MT-CN through a mechanism other than altering blood
cell-type composition.
As further evidence that MT-CN is a proxy for blood

cell composition, we looked up MT-CN association P
values in METSIM for the top five neutrophil and plate-
let count QTLs from the NHGRI-EBI GWAS Catalog
[51]. Out of ten variants tested, five had P < 0.05 in

Table 7 Association results between metabolic syndrome traits and MT-CN polygenic risk score in 357656 UK Biobank
samples. β refers to the regression coefficient of MT-CN in a linear regression of cell type onto MT-CN PRS and other covariates (see
Methods). Bolded results are significant below a nominal α = 0.05. The weight phenotype tested was that which was measured at
the time of impedance measurement.

Trait Without platelet and neutrophil adjustment With platelet and neutrophil adjustment

β SE P β SE P

Type 2 diabetes − 0.1681 0.0826 0.0419 − 0.1467 0.0844 0.0823

BMI − 0.0372 0.0175 0.0331 − 0.0233 0.0175 0.1836

Fat mass − 0.0452 0.0176 0.0100 − 0.0318 0.0177 0.0716

C-reactive protein − 0.0015 0.0178 0.9305 0.0206 0.0171 0.2291

HDL 0.0573 0.0187 0.0021 0.0416 0.0187 0.0262

Total triglycerides − 0.0500 0.0176 0.0046 − 0.0330 0.0175 0.0603

Weight − 0.0359 0.0176 0.0414 − 0.0218 0.0178 0.2189

Table 6 Association results between blood cell count traits and MT-CN polygenic risk score in 357656 UK Biobank
samples. β refers to the regression coefficient of MT-CN in a linear regression of cell type onto MT-CN PRS and other covariates (see
Methods). Bolded results are significant below a nominal α = 0.05.

Cell type All samples No post hoc high-leverage outliers

β SE P β SE P

Leukocyte − 0.00856 0.00170 4.42 × 10-7 - - -

Monocyte − 0.00119 0.00170 0.482 - - -

Lymphocyte − 0.00250 0.00170 0.142 - - -

Neutrophil − 0.00954 0.00169 1.80 × 10-8 − 0.00948 0.00169 2.17 × 10-8

Platelet 0.00548 0.00170 1.24 × 10-3 0.00548 0.00170 1.25 × 10-3
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METSIM (Table S11 - Additional File 1). We note that
three of these five were either near or identical to known
MT-CN loci (including rs9389268, the marker identified
in this study). rs25645, a variant reported to be highly
associated with neutrophil count [38], is only 2.5 kb
away from rs709591, a SNP with a reported suggestive
association with MT-CN [31] and a P value of 1.61 ×
10-4 in our METSIM study. Moreover, rs11759553, a
platelet-associated variant [38], is 324 kb away from
rs9389268, the lead marker for MT-CN in METSIM
(rs11759553 P = 2.15 × 10-10 in METSIM). Finally, rs445
was reported as a lead marker for both MT-CN associ-
ation [29] and platelet count [38]. rs445 has P = 0.048
for association with MT-CN in METSIM. While none of
the 10 known cell count-associated markers tested
achieved significance beyond a Bonferroni threshold, the
overlap between these variants and independently mea-
sured MT-CN QTLs was suggestive of a relationship be-
tween cell counts and whole blood-derived MT-CN.
Using UKBB data, we further sought to generate hy-

potheses for other phenotypic associations with MT-CN.
To this end, we performed a phenome-wide screen of
MT-CN PRS against all of the UKBB phenotypes avail-
able to us. To curate and transform these phenotypes,
we used a modified version of PHESANT [52, 53], which
outputs all continuous variables in both raw and inverse
rank normalized form. We chose to interpret the results
from the normalized continuous variables (Table S5 -
Additional File 2) to be conservative and robust to out-
liers, although the results of the raw continuous variable
analyses were similar (Table S6 - Additional File 2). No
metabolic syndrome traits appeared among the tested
traits with q < 0.05. However, the tests for HDL choles-
terol, self-reported heart attack, and doctor-diagnosed
heart attack did yield somewhat suggestive results (q =
0.123, 0.176, and 0.176, respectively). We also repeated
this screen with adjustment for neutrophil and platelet
counts (Table S7 - Additional File 2 and Table S8 - Add-
itional File 2), resulting again in no metabolic syndrome
phenotypes achieving q < 0.05. The addition of neutro-
phil and platelet counts as covariates attenuated the sug-
gestive signals for HDL cholesterol, self-reported heart
attack, and doctor-diagnosed heart attack (q = 0.284,
0.391, and 0.402, respectively).

Discussion
We have described one of the most well-powered studies
to date of the genetic relationship between MT-CN
measurements in blood and cardiometabolic phenotypes.
Our study is one of the very few of which we are aware
to utilize WGS data, found to be the most reliable
method for estimating MT-CN in a recent study [22],
for this purpose. Our data show highly significant associ-
ations between blood-derived MT-CN measurements

and several cardiometabolic traits, particularly insulin
and fat mass. Anecdotally, it is interesting to note that
these MT association signals can also be detected using
read-depth analysis of the nuclear genome (Figure S1 -
Additional File 1) [54], where reads derived from
mtDNA align erroneously to several nuclear loci based
on homology between the MT genome and ancient nu-
clear mitochondrial insertions. This result provides add-
itional evidence for the reported trait associations using
an independent MT-CN estimation method, and indi-
cates that these homology-based signals need to be taken
into account in future CNV association studies.
We observed strong heritability of MT-CN (31%), on

par with other widely studied cardiometabolic traits such
as LDL, and identified one single marker association on
a haplotype previously associated with several
hematological parameter s[41–44]. A previous study
using qPCR to quantify MT-CN reported two sub-
threshold QTLs [31]; of these markers, only rs709591
replicated in our study (P = 1.61 × 10-4). We also report
one gene with a rare-variant association with MT-CN,
TMBIM1, that has a known link to non-alcoholic fatty
liver disease [49]. More work is needed to replicate this
genetic association.
The association of rs9389268 with MT-CN is not sur-

prising considering our approach for normalizing MT-
CN. Because our MT-CN estimate was based on the ra-
tio of mtDNA coverage to nuclear DNA coverage,
changes in the cell-type composition of blood could re-
sult in changes in our normalized measurement if the
underlying cell types have different average numbers of
mitochondria. This is especially true of platelets, which
can contain mitochondria but not nuclei, and whose
counts are known to be associated with rs9399137.
We note that the effect directions of the associations

of platelet counts with metS and MT-CN PRS seem in-
consistent at first glance, as platelet counts were posi-
tively correlated with MT-CN PRS (Table 6) and metS
(Table S3 - Additional File 1), while MT-CN and insulin
(a proxy for metS) were negatively correlated (Fig. 1b).
However, the FinMetSeq regression model in Fig. 1b was
not conditional on any other covariates (although age,
age2, and sex were regressed out of the MT-CN meas-
urement prior to this analysis), while the UKBB models
that gave rise to Table 6 and Table S3 (Additional File
1) adjusted for many additional covariates, including 20
PCs and age-sex interaction terms. As a result, the effect
directions for the analyses in the two datasets are not
directly comparable.
Using a novel multiple-variant instrument-building

method, we report evidence from Mendelian
randomization supporting a causal role for MT-CN in
metabolic syndrome. Further, we used UK Biobank data
to show that not only does the link between MT-CN
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and metabolic syndrome replicate in an independent
data set using a polygenic risk score approach. Contrary
to previous claims that variability in the number of mito-
chondria per cell is responsible for CHD risk [16], this
association is mediated by neutrophil and platelet
counts.
One important question that our study cannot defini-

tively resolve is the relative contribution of intracellular
mitochondrial abundance versus cell-type composition
differences in determining the measured MT-CN value.
We identified a MT-CN association result at a known
QTL for cell-type composition of blood [41–44]
(HBS1L-MYB), and we further replicated a prior sub-
threshold association at a different neutrophil-associated
locus [37, 38] (rs709591). Together, these results argue
that cell-type composition is an important component of
this measurement. On the other hand, two other signifi-
cant associations from the Finnish dataset (rs2288464,
TMBIM1) showed no effect on cell-type composition in
the UK Biobank. Future work in large cohorts with both
WGS and cell count data—which were not simultan-
eously measured in any samples in this study—will be
required to rigorously determine what blood-derived
MT-CN primarily measures. However, the results of our
MR and UK Biobank analyses together suggest that MT-
CN is causally related to metabolic syndrome traits, and
that this relationship is mediated by cell-type compos-
ition differences.
There is prior evidence to support the role of in-

flammation—specifically via innate immune cells
such as neutrophils—in the etiology of type 2 dia-
betes (T2D) and insulin resistance [55–57], which
suggests a plausible model by which peripheral
blood neutrophil count could influence metabolic
syndrome. Nutrient excess and high-fat diets are
known to recruit neutrophils into tissues, which
then cause insulin resistance both by releasing
TNF-⍺ and IL-6 and by upregulating cyclooxygen-
ase [55]. This leads to increased LTB4 and subse-
quent upregulation of NF-κB, a central regulator of
inflammation. Moreover, free fatty acids also cause
neutrophils to stay in tissues longer, resulting in
persistent inflammation and leading to insulin re-
sistance [55]. While it is known that inflammation,
and particularly neutrophils, play a role in meta-
bolic syndrome, our results strongly suggest that
peripheral blood neutrophil count causally contrib-
utes to this process and is associated with heritable
genetic variation in the human population. Overall,
our work provides further insight into the role that
inflammation plays in metabolic syndrome and sup-
ports the idea that targeting inflammation may be a
fruitful avenue of investigation in developing future
therapeutics.

Conclusions
In summary, we have shown that peripheral blood MT-
CN as measured by sequencing is significantly associated
with metS and have identified two loci significantly asso-
ciated with this phenotype, one of which is a novel gene.
We have used a Mendelian randomization framework to
provide evidence that MT-CN is causal for fasting insu-
lin levels. Finally, we replicated the association between
MT-CN and metS in a separate dataset and showed that
this association is largely eliminated by adjusting for
neutrophil and platelet counts, providing further insight
into the role that inflammation plays in metabolic syn-
drome. Our work uses a large cohort and improved
methods to add clarity to a field with often contradictory
reports.

Methods
Genotype and phenotype data
Whole genome sequencing (WGS) was performed on a
cohort of 4163 samples comprising 3074 male samples
from the METSIM study [58] and 1089 male and female
samples from the FINRISK study [59]. For details, see
Supplementary Methods - Additional File 3. Separately,
whole exome sequencing (WES) data (N = 19034), geno-
typing array data (N = 17718) imputed using the Haplo-
type Reference Consortium panel [60] v1.1, and
transformed, normalized quantitative cardiometabolic
trait data were obtained from an earlier study [34]. FINR
ISK array data came in nine genotyping batches, two of
which were excluded from the present study due to
small sample size. The traits, normalization and trans-
formation procedures, and sample sizes are described in
a previous publication [34]. The WES and imputed sam-
ple sets contained 4013 and 3929 of the 4163 WGS sam-
ples included in the present study.

Mitochondrial genome copy number estimation
We estimated mitochondrial genome copy number (MT-
CN) from both WGS and WES data. In WGS data, we
used BEDTools [61] to calculate per-base coverage on the
mitochondrial genome from the latest available 4163
WGS CRAM files. MT-CN was then calculated by nor-
malizing the mean coverage of the mitochondrial genome
to the “haploid coverage” of the autosomes as calculated
by Picard [62]. The result was then doubled to account for
the diploidy of the autosomal genome. This normalization
is summarized by the following equation:

MT CNWGS ¼ 2� Mean mtDNA coverage
Haploid autosomal coverage

The output from the above equation served as the raw
measurement of per-sample MT-CN. To reduce batch
effects, we separated the 4163 samples into three groups:
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METSIM, FINRISK collected in 1992 or 1997, and FINR
ISK collected in 2002 or 2007 (the FINRISK batching de-
cisions were made based on the means shown in Figure
S4 - Additional File 1). Within each cohort, the raw esti-
mates were regressed on age, age2, and sex (FINRISK
only), and the residuals were inverse-normal trans-
formed. We combined the three batches of normalized
MT-CN values and inverse-normal transformed the
combined values for downstream analysis.
We used a similar procedure to estimate MT-CN from

WES data, with mean autosomal coverage estimates
taken from XHMM [63]. However, as mitochondrial
genomic coverage was nonuniform due to the use of hy-
brid capture probes, mean mtDNA coverage was not an
obvious choice of metric for MT-CN estimation (Figure
S5 - Additional File 1). To summarize this nonuniform
mitochondrial genomic coverage into a single number,
we tried taking the mean and the maximum depth of
reads that aligned to the mitochondrial chromosome;
the resulting values were then processed in the same
way as the WGS-estimated values. We evaluated the ap-
proaches by measuring the R2 between WGS-estimated
and WES-estimated MT-CN in the 4013 samples for
which both data types were available (Figure S6 - Add-
itional File 1). While R2 was fairly high using both ap-
proaches, the maximum coverage method was ultimately
selected for use as it yielded a higher R2 (0.445 vs 0.380).
As a result, the WES MT-CN estimate was calculated as
follows:

MT CNWES ¼ 2� Maximum mtDNA coverage
Mean haploid autosomal coverage

.

Mitochondrial haplogroup estimation
We assigned mitochondrial haplogroups using Haplo-
Grep [64] v1.0. Mitochondrial SNP/indel variants were
genotyped using GATK GenotypeGVCFs, and a custom-
ized filter based on allele balance was applied to the
combined callset. HaploGrep was then used to call mito-
chondrial haplotypes for each individual. We adjusted
for major haplogroups in the same linear regressions of
metabolic traits onto MT-CN (see Results) and calcu-
lated the summary statistics from a permutation test as
implemented in the R package lmPerm [65].

Heritability analysis
To estimate heritability of MT-CN, a genomic
relatedness-based restricted maximum-likelihood
(GREML) method was used as implemented in GCTA
[66]. The original GREML [67] method was used first,
followed by GREML-LDMS [68] to account for biases
arising from differences in minor allele frequency (MAF)

spectrum or linkage disequilibrium (LD) properties be-
tween the genotyped variants and the true causal vari-
ants [69]. For both analyses, MT-CN values were
normalized and residualized for sex, age, and age2 as de-
scribed above. Heritability estimation was performed
jointly and separately for METSIM and FINRISK sam-
ples using WGS and imputed array genotypes. In all
cases, a minimum MAF threshold of 1% was applied. Be-
yond those covariates already adjusted for in the
normalization process, sensitivity analyses were per-
formed on imputed array data to determine whether
heritability estimates were sensitive to inclusion of co-
variates. In these experiments, either cohort or FINRISK
genotyping array batch were included as fixed-effect co-
variates in joint analyses of imputed array data; in nei-
ther case was the final heritability estimate significantly
affected (h2 = 0.09, SE = 0.02 in both cases). In GREML-
LDMS, genotypes were split into four SNP-based LD
score quartiles and two MAF bins (1% > MAF > 5% and
MAF > 5%), and genetic relatedness matrices (GRMs)
were estimated separately for each of the eight combina-
tions. The GREML algorithm was then run on all eight
GRMs simultaneously using the first ten principal com-
ponents (PCs) of the genotype matrix (as calculated by
smartPCA [70] v13050) as fixed covariates [68]. The use
of GREML-LDMS over GREML also did not affect esti-
mated heritability values (Table 3), suggesting that the
properties of the causal variants for this trait do not lead
to significant biases when using the standard GREML
approach.
We observed that WGS heritability estimates are lower

when analyzing FINRISK and METSIM data together
as compared with the analysis of METSIM alone (Table
2) (note that FINRISK-only heritability estimates are not
reliable as they have large standard errors resulting from
the small number of FINRISK samples sequenced). One
potential explanation for this is that there exists substan-
tial heterogeneity across FINRISK survey years (Figure
S4 - Additional File 1), and between the FINRISK and
METSIM cohorts, with respect to the reliability with
which mtDNA was captured (likely due to different
DNA preparation protocols).

Genome-wide association analyses
Genome-wide association studies (GWAS) were per-
formed using the same normalized phenotype used in
heritability analyses. Single-variant GWAS were con-
ducted using EMMAX [71] as implemented in EPACTS
[72]. Kinship matrices required by EMMAX were gener-
ated by EPACTS; kinship matrices for WGS GWAS
were generated from WGS data, while those for WES
and imputed array-based GWAS were generated from
WES data. A P value threshold of 5 × 10-8 was used for
the WGS and imputed array GWAS, while 5 × 10-7 was
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used for significance in the WES GWAS. Single-variant
association analyses of WGS and WES data did not in-
clude any covariates in the EMMAX model, although all
association analyses were performed using MT-CN
values that adjusted for age, age2, sex, and cohort (see
“Mitochondrial genome copy number estimation” sec-
tion). All association tests labeled “joint” were performed
on METSIM and FINRISK cohorts together; in one case,
a random-effects meta-analysis was performed using
individual-cohort summary statistics and the R package
meta [73].
Gene-based variant aggregation studies (RVAS) were

done using a mixed-model version of SKAT-O [47] as
implemented in EPACTS. Variants with CADD [74]
score greater than 20 and minor allele frequency less
than 1% were grouped into genes as annotated by VEP
[75] (which by default annotates a variant with a gene
name if the gene falls within 5 kb of that gene by de-
fault). For gene-based RVAS, Bonferroni-corrected
genome-wide significance thresholds varied slightly due
to differing the number of genes with at least two vari-
ants meeting the above criteria in each test, but were ap-
proximately 2 × 10-6 in all cases.

Mendelian randomization
To assess the evidence for a causal relationship between
mitochondrial genome copy number and fasting serum
insulin levels, the METSIM cohort alone was used due
to its homogeneity of sex, collection procedures, and lo-
cation. A penalized regression-based, multiple-variant
Mendelian randomization (MR) approach was employed
to enforce the necessary assumptions of MR methods.
While some MR studies have tested one or more as-
sumptions post hoc, to our knowledge, there is no pub-
lished method that tries to enforce these assumptions
during the process of building a genetic instrument from
multiple variants in the absence of a large set of known
genotype-exposure associations. In our formulation (Fig.
4), X, the natural log of MT-CN (adjusted for nuclear
genomic coverage but not for age, age2, or sex), and a
genotype matrix G were used to build a genetic instru-
ment Z, which was then tested against Y, the natural log
of fasting serum insulin. The goal of the MR approach
was to use a large number of common variants to build
a genetic instrument Z that satisfies the three assump-
tions of MR [76] (see Supplementary Methods - Add-
itional File 3).
To account for missing phenotype data, missing values

were multiply imputed using regression trees as imple-
mented in the R package mice [77] v3.4.0 (maxit = 25).
This imputation was repeated 1000 times in parallel,
with each set of imputed values being carried through
the entire procedure described above. The resulting
1000 computed instrument effect sizes and standard

errors were combined using Rubin’s method as imple-
mented in the R package Amelia [78] v1.7.5. The com-
bined effect size and standard error were then tested for
significance using a t test with 998 degrees of freedom.
The above procedure was performed separately for

METSIM samples with WGS data (N = 3034) and
METSIM samples with only imputed array data (N =
6774) using an L1 penalty in the instrument-building re-
gression, and again using an L2 penalty. Both sample
sets were limited to those for which relevant quantitative
traits were available. An inverse-variance weighted meta-
analysis was performed across data sets for L1- and L2-
penalized regression separately. The resulting effect size
and standard error were tested for significance using a Z
test.
To ensure that our results were not driven by outlier

samples, we removed outliers in two stages. Before the
MR analyses, we used principal components analysis
(PCA), Mahalanobis distance, and multi-trait extreme
outlier identification to remove 5 WGS samples and 15
imputed array samples based on quantitative trait data.
We also removed high-leverage, high-residual outliers
from the causality test regression (see below) post hoc
and recomputed the instrument effect sizes to ensure
that there was no significant change in the results. In
each of the 1000 multiple imputation runs, among the
samples with standardized residual greater than 1, the
top 10 samples by leverage were recorded. Any sample
that was recorded in this way in at least one run was
then excluded from the re-analysis as a post hoc outlier.
The results of this additional analysis showed only very
small differences in effect estimates, and their interpret-
ation remained the same (Table S9 - Additional File 1.
Thus, we concluded that our causal inference results
were not driven by outlier samples.
One caveat of this method is that, as mentioned above,

exclusion of sets A and B from the regression penalty
(see Supplementary Methods - Additional File 3) did not
perfectly orthogonalize the resulting instrument from
these variables in practice (Figure S7 - Additional File 1).
Reasons for this may include relatively low levels of
shrinkage in the instrument-building regression or
higher order associations between MT-CN and the con-
founding variables. However, our method still represents
an improvement over the current standard, which is not
to adjust for these covariates at all. Another caveat is
that it is impossible to determine the perfect set of co-
variates for which adjustment is appropriate. Lack of ad-
justment for truly confounding variables can result in an
instrument which does not satisfy MR assumptions 2
and/or 3 (see Supplementary Methods - Additional File
3), yielding a biased effect estimate. Conversely, unneces-
sary adjustment for certain variables can also result in
biases. For example, adjusting for an intermediate
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phenotype that truly lies along the path from Z to X to
Y can cause a false-negative signal, making the causality
test overly conservative. Alternatively, adjusting for some
variables can result in collider biases [79]. That is, if both
Z and Y are causal for a confounder U, then adjusting
for U can induce a dependency between Z and Y (Figure
S8 - Additional File 1) that did not previously exist.
We note that a known source of bias in MR studies is

the selection of samples based on case–control status for
a related disease [80]. While METSIM is a population-
based study, samples were selected for WGS based on
cardiovascular disease case–control status so as to en-
rich the sequenced samples for cases. This has the po-
tential to bias a MR experiment if both the exposure and
the outcome are associated with the disease, which is
certainly possible. However, in our design, all of the
METSIM samples not chosen for WGS were tested in
the imputed array experiment. The consistency of effect
estimates between the WGS and imputed array samples
both in the L1 and L2 penalty cases (Fig. 4d) suggests
that there is little to no bias arising from sample selec-
tion in this experiment.

Calculation and testing of polygenic risk score in the UK
Biobank
To search for associations between MT-CN and other
phenotypes, the genetic instrument calculated in Finnish
imputed array data was computed and treated as a poly-
genic risk score (PRS) in a relatively homogenous subset
of 357656 UK Biobank samples identified by a previous
study [53]. We calculated βG, the average of the five values
of βG

(-j) across all 1000 multiple imputation runs using an
L2 penalty and imputed array data—the L2 penalty was
chosen because it performed better than the L1 on both
METSIM data types, and the imputed array data set was
chosen due to its larger sample size than the WGS set
(Fig. 4d). Next, to keep the procedure as consistent as pos-
sible with the imputation protocol used for METSIM—
which used haploid dosage values to call imputed geno-
types [34]—we called imputed genotypes using the ex-
pected alternate allele dosage from the UK Biobank by
setting thresholds of 0.5 and 1.5. Using the resulting im-
puted variant calls, we calculated our PRS as ~Z ¼ βG � ~G,

where ~G is the UK Biobank genotype dosage matrix con-
structed in the same way as G in METSIM.
To test for associations with MT-CN PRS in the UK

Biobank, we employed two approaches: a hypothesis-
driven analysis targeted to the phenotypes associated
with MT-CN in the Finnish data as well as a hypothesis-
free screen of all the phenotypes available to us.
In the targeted analysis, we used our genetic instru-

ment from the MR experiment as a PRS for MT-CN in
our chosen subset of the UK Biobank and tested for

associations with several blood cell count and metabolic
syndrome traits. Given the association of MT-CN with
rs9389268 (see Results), we selected as cell count traits
total leukocyte count as well as lymphocyte, neutrophil,
monocyte, and platelet counts for testing (because
lymphocyte count was not readily available, it was calcu-
lated as the product of leukocyte count and lymphocyte
percentage). We did not include basophils and eosino-
phils in this analysis considering that they comprise a
small minority of white blood cells and are unlikely to
affect MT-CN measured from whole blood. All cell
count traits were log-transformed and standardized sep-
arately by sex.
We took several steps to eliminate outlier samples in

the dataset. Through three iterations of PCA on the cell
count matrix and subsequent outlier removal, we re-
moved 1637 outlier samples. We then fit null linear
models of the form Cell count ∼Age +Age2 + Sex +Age :
Sex +Age2 : Sex + PCs (the first 20 PCs were included)
for each cell count trait and subsequently removed sam-
ples with either large residuals or high leverage and
moderate residuals in at least one model (following the
example of [53]). Through two iterations of null model
fitting and outlier removal, we removed 7 additional
samples based on null model fit. Tests of association be-
tween cell counts and MT-CN PRS were based on the
PRS regression coefficient in linear models of the form
Cell coutnt ∼ PRS +Age +Age2 + Sex +Age : Sex + Age2 :
Sex + PCs.
We repeated this process for those cardiometabolic

traits found to be suggestively associated with MT-CN
in the Finnish dataset (P < 10-6) that were also readily
available in the UK Biobank (Fig. 1a, Table S1 - Add-
itional File 2); these phenotypes were body mass index
(BMI), fat mass, C-reactive protein, high-density lipopro-
tein, total triglycerides, and weight. We also chose to in-
clude T2D status because of the lack of insulin
measurement in the UK Biobank. Except for T2D, a bin-
ary trait, all traits were log-transformed before further
analysis (after removing 817 samples with negative
values for T2D, representing missing information). The
above outlier removal steps were repeated for the car-
diometabolic traits after excluding the outliers already
identified from the cell count data, with the only major
modification being the use of logistic regression for the
T2D models. This process resulted in the removal of 42
and 53 samples from PCA and null model fitting,
respectively.
SKAT-O tests of association between TMBIM1 and

the cell count traits identified above were also per-
formed. Similarly to the RVAS in Finnish data, variants
within 5 kb of TMBIM1 with MAF < 1% and CADD
v1.6 score > 20 were selected for inclusion in this ana-
lysis. Rather than the mixed-model version of SKAT-O
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used in the Finnish data, standard SKAT-O was used
due to the lower expected level of cryptic relatedness in
the UK Biobank population.
We also performed a hypothesis-free, phenome-wide

screen of UK Biobank traits to which we had access
(Table S10 - Additional File 2), to search for other asso-
ciations with MT-CN PRS. The statistical models used
in this screen were of the same form as those described
above, both with and without adjustment for neutrophil
and platelet counts. To curate and transform pheno-
types, we used an adapted version of PHESANT [52, 53].
A few further modifications were made to the pipeline,
the most significant being the direct use of logistic re-
gression for testing categorical unordered variables, the
inclusion of cancer phenotypes, and the exclusion of
sex-specific (or nearly sex-specific) categorical traits.
The PHESANT pipeline we used [53] outputs continu-
ous variables both in their raw form and after applying
an inverse rank normal transformation. For the sake of
being conservative and robust to outliers, we chose to
interpret the results from the normalized continuous
variables. To control false discovery rate, we performed
a Benjamini-Hochberg procedure with Storey correction
as implemented in the R package q value [81] v2.18.0 on
the categorical and normalized continuous variables to-
gether. As a secondary analysis, this same correction was
applied to the categorical and raw continuous variables
together.
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