57 research outputs found

    Chemicals of Emerging Arctic Concern in north-western Spitsbergen snow: Distribution and sources

    Get PDF
    Personal care products contain chemicals that are considered of emerging concern in the Arctic. In this study, a selected group of personal care products was investigated in the snowpack on north-western Spitsbergen. We report a preliminary study on the spatial and seasonal distribution of 13 ingredients commonly found in personal care products, including fragrance materials, UV filters, BHT and BPA. Possible sources and deposition processes are discussed. Experimental analyses utilizing GC–MS/MS, were complemented with outputs from the HYSPLIT transport and dispersion model. The results reveal the presence of all selected compounds in the snow, both in proximity to and distant from the research village of Ny-Ålesund. For some of these chemicals this is the first time their presence is reported in snow in Svalbard. These chemicals show different partitioning behaviours between the particulate and dissolved phases, affecting their transport and deposition processes. Additionally, concentrations of certain compounds vary across different altitudes. It is observed the relevance of long-range atmospheric transport during winter at most sites, and, regardless of the proximity to human settlements, snow concentrations can be influenced by long-distance sources. This study highlights the need for detailed information on CEACs' physical-chemical properties, considering their potential impact on fresh and marine waters during the snowmelt under climate change

    Automated observation of physical snowpack properties in Ny-Ålesund

    Get PDF
    The snow season in the Svalbard archipelago generally lasts 6–10 months a year and significantly impacts the regional climate, glaciers mass balance, permafrost thermal regime and ecology. Due to the lack of long-term continuous snowpack physical data, it is still challenging for the numerical snow physics models to simulate multi-layer snowpack evolution, especially for remote Arctic areas. To fill this gap, in November 2020, an automated nivometric station (ANS) was installed ∼1 km Southwest from the settlement of Ny-Ålesund (Spitzbergen, Svalbard), in a flat area over the lowland tundra. It automatically provides continuous snow data, including NIR images of the fractional snow-cover area (fSCA), snow depth (SD), internal snow temperature and liquid water content (LWC) profiles at different depths with a 10 min time resolution. Here we present the first-year record of automatic snow preliminary measurements collected between November 2020 and July 2021 together with weekly manual observations for comparison. The snow season at the ANS site lasted for 225 days with an annual net accumulation of 117 cm (392 mm of water equivalent). The LWC in the snowpack was generally low (<4%) during wintertime, nevertheless, we observed three snow-melting events between November and February 2021 and one in June 2021, connected with positive temperature and rain on snow events (ROS). In view of the foreseen future developments, the ANS is the first automated, comprehensive snowpack monitoring system in Ny-Ålesund measuring key essential climate variables needed to understand the seasonal evolution of the snow cover on land

    The seasonal change of PAHs in Svalbard surface snow

    Get PDF
    The Arctic region is threatened by contamination deriving from both long-range pollution and local human activities. Polycyclic Aromatic Hydrocarbons (PAHs) are environmental tracers of emission, transport and deposition processes. A first campaign has been conducted at Ny-Ålesund, Svalbard, from October 2018 to May 2019, monitoring weekly concentrations of PAHs in Arctic surface snow. The trend of the 16 high priority PAH compounds showed that long-range inputs occurred mainly in the winter, with concentrations ranging from 0.8 ng L−1 to 37 ng L−1. In contrast to this, the most abundant analyte retene, showed an opposite seasonal trend with highest values in autumn and late spring (up to 97 ng L−1), while in winter this compound remained below 3 ng L−1. This is most likely due to local contributions from outcropping coal deposits and stockpiles. Our results show a general agreement with the atmospheric signal, although significant skews can be attributed to post-depositional processes, wind erosion, melting episodes and redistribution

    Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers

    Get PDF
    The Svalbard archipelago is particularly sensitive to climate change due to the relatively low altitude of its main ice fields and its geographical location in the higher North Atlantic, where the effect of Arctic amplification is more significant. The largest temperature increases have been observed during winter, but increasing summer temperatures, above the melting point, have led to increased glacier melt. Here, we evaluate the impact of this increased melt on the preservation of the oxygen isotope (δ18O) signal in firn records. δ18O is commonly used as a proxy for past atmospheric temperature reconstructions, and, when preserved, it is a crucial parameter to date and align ice cores. By comparing four different firn cores collected in 2012, 2015, 2017 and 2019 at the top of the Holtedahlfonna ice field (1100 m a.s.l.), we show a progressive deterioration of the isotope signal, and we link its degradation to the increased occurrence and intensity of melt events. Our findings indicate that, starting from 2015, there has been an escalation in melting and percolation resulting from changes in the overall atmospheric conditions. This has led to the deterioration of the climate signal preserved within the firn or ice. Our observations correspond with the model's calculations, demonstrating an increase in water percolation since 2014, potentially reaching deeper layers of the firn. Although the δ18O signal still reflects the interannual temperature trend, more frequent melting events may in the future affect the interpretation of the isotopic signal, compromising the use of Svalbard ice cores. Our findings highlight the impact and the speed at which Arctic amplification is affecting Svalbard's cryosphere.</p

    Ice Caves in Italy

    No full text
    In Italy, more than 1600 caves are classified as cryo-caves, due to the presence of multiyear snow, firn, or ice. Previous regional studies show that at least 10% of such caves can be included in the ice cave classification, because they have a perennial ice deposit. However, the strong differences in the karstological characteristics of the Italian geology allows having not only caves formed in limestone, dolomite, or marble terrains, in the Alps as well as in the Apennines, but also in lava tubes on the Etna Volcano. Four ice caves are reported here as examples of three different mechanisms of ice cave formation and evolution. From Grigna Settentrionale, central Alps, a vertical shaft ice deposit mainly formed by dripping water was studied by chemical and stable isotope record. Two high altitude ice caves originated by snow accumulation and ice dipping were studied in the Canin massif, southeastern Alps, and a lava tube from Etna volcano was studied for its ice dynamics and air-circulation mechanisms. These four examples provide important data on the evolution of such ice deposits, giving a first clue on their progressive reduction under recent climate forcing

    Sea-ice reconstructions from bromine and iodine in ice cores

    No full text
    As the intricacies of paleoclimate dynamics are explored, it is becoming understood that sea-ice variability can instigate, or contribute to, climate change instabilities commonly described as “tipping points”. Compared to ice sheets and circulating ocean currents, sea-ice is ephemeral and continental-scale changes to sea ice cover occur seasonally. Sea-ice greatly influences polar albedo, atmosphere-ocean gas exchange and vertical mixing of polar ocean masses. Major changes in sea ice distribution and thickness have been invoked as drivers of deglaciations as well as stadial climate variability described in Greenland climate records as “Dansgaard-Oeschger” cycles and described in Antarctic climate records as “Antarctic Isotopic Maxima”. The role of halogens in polar atmospheric chemistry has been studied intensively over the past few decades. This research has been driven by the role of bromine, primarily as gas-phase bromine monoxide (BrO), which exerts a key control on polar tropospheric ozone concentrations. Initial findings led to the discovery of boundary-layer self-catalyzing heterogeneous bromine reactions fed by sunlight and ozone, known as bromine explosions. First-year sea-ice and blowing snow have been identified as key components for this heterogeneous bromine recycling in the polar boundary layer. This understanding of polar halogen chemistry – supported by an expanding body of observations and modeling – has formed the basis for investigating quantitative links between halogen concentrations in the polar atmospheric boundary layer and sea-ice presence and/or extent. Despite the clear importance of sea-ice in paleoclimate research, the ice core community lacks a conservative and quantitative proxy for sea-ice extent. The most commonly applied proxy, methanesulphonic acid (MSA), is volatile and has not been demonstrated reliably for ice core records extending beyond the last few centuries. Sodium has also been applied to reconstruct sea-ice extent in a semi-quantitative manner although the effects of meteorological transport noise are significant. Contrary to a priori expectations, the halogens bromine and iodine appear to be stable in polar snow and ice over millennial timescales, addressing the temporal limitations of MSA records. Unfortunately, transport and meteorological variability influence sodium deposition as well as the deposition of halogens and the many other ionic impurities found in ice cores. The atmospheric chemistry of halogens is more complex than those of sodium or MSA due to the mixed-phase (gas and aerosol) nature of halogen photochemistry. Thus the application of halogen records in ice cores to sea-ice reconstruction overcomes some challenges posed by existing proxies, but also opens new challenges specific to halogens. Challenges common to all sea-ice proxies include the deconvolution of changes in emission source locations and changes in transport efficacy, particularly those occurring during climate transitions combining changes in sea-ice and atmospheric circulation, such as stadial/interstadial or glacial/interglacial climate variability. In this review, we describe the rationale and available evidence for linking the halogens bromine and iodine found in polar snow and ice to sea-ice extent. Reported measurements of bromine and iodine in polar snow and ice samples are critically discussed. We also consider aspects of halogen transport and retention in polar snow and ice that are still poorly understood. Overall, there is a growing body of evidence supporting the application of bromine to sea-ice reconstructions, and the use of iodine to reconstruct marine biological activity mediated in part by sea-ice extent. These halogens complement existing sea-ice proxies but most crucially, offer the capacity to greatly extend the temporal and spatial coverage of ice core-based sea-ice reconstructions. We identify knowledge gaps existing in the current understanding of spatial and temporal variability of halogen distributions in the polar regions. We suggest areas where polar halogen chemistry can contribute to a better understanding of the halogen records recovered from ice cores. Finally, we propose future steps for establishing reliable and constructive sea-ice reconstructions based on bromine and iodine as observed in snow and ice cores

    Anhydrosugars in aerosol samples from Ny-Alesund, Svalbard Island, 2014

    No full text
    Anhydrosugars were quantified in 16 aerosol samples collected during the Arctic campaign at Gruvebadet Laboratory in 2014. Aerosol samples were collected in quartz fiber filters. They were spiked with isotopically labelled standard solutions (2 - 3 Âľg/ml) prior extraction. Anhydrosugar content was measured using IC-MS

    Anhydrosugars in aerosol samples from Ny-Alesund, Svalbard Island, 2013

    No full text
    Anhydrosugars were quantified in 24 aerosol samples collected during the Arctic campaign at Gruvebadet Laboratory in 2013. Aerosol samples were collected in quartz fiber filters. They were spiked with isotopically labelled standard solutions (2 - 3 Âľg/ml) prior extraction. Anhydrosugar content was measured using IC-MS

    Anhydrosugars in aerosol samples from Ny-Alesund, Svalbard Island, 2013

    No full text
    Anhydrosugars were quantified in 24 aerosol samples collected during the Arctic campaign at Gruvebadet Laboratory in 2013. Aerosol samples were collected in quartz fiber filters. They were spiked with isotopically labelled standard solutions (2 - 3 Âľg/ml) prior extraction. Anhydrosugar content was measured using IC-MS

    Anhydrosugars in aerosol samples from Ny-Alesund, Svalbard Island, 2014

    No full text
    Anhydrosugars were quantified in 16 aerosol samples collected during the Arctic campaign at Gruvebadet Laboratory in 2014. Aerosol samples were collected in quartz fiber filters. They were spiked with isotopically labelled standard solutions (2 - 3 Âľg/ml) prior extraction. Anhydrosugar content was measured using IC-MS
    • …
    corecore