299 research outputs found

    Using Cold Atoms to Measure Neutrino Mass

    Full text link
    We propose a beta decay experiment based on a sample of ultracold atomic tritium. These initial conditions enable detection of the helium ion in coincidence with the beta. We construct a two-dimensional fit incorporating both the shape of the beta-spectrum and the direct reconstruction of the neutrino mass peak. We present simulation results of the feasible limits on the neutrino mass achievable in this new type of tritium beta-decay experiment.Comment: 10 pages, 5 figure

    Stark deceleration of lithium hydride molecules

    Full text link
    We describe the production of cold, slow-moving LiH molecules. The molecules are produced in the ground state using laser ablation and supersonic expansion, and 68% of the population is transferred to the rotationally excited state using narrowband radiation at the rotational frequency of 444GHz. The molecules are then decelerated from 420m/s to 53m/s using a 100 stage Stark decelerator. We demonstrate and compare two different deceleration modes, one where every stage is used for deceleration, and another where every third stage decelerates and the intervening stages are used to focus the molecules more effectively. We compare our experimental data to the results of simulations and find good agreement. These simulations include the velocity dependence of the detection efficiency and the probability of transitions between the weak-field seeking and strong-field seeking quantum states. Together, the experimental and simulated data provide information about the spatial extent of the source of molecules. We consider the prospects for future trapping and sympathetic cooling experiments.Comment: 14 pages, 6 figures; minor revisions following referee suggestion

    Digestibilidad y energía metabolizable en Amaranthus greggii S. Wats.

    Get PDF
    Amaranthus greggii S. Wats. es una especie de posible valor alimenticio, perenne, susceptible a heladas, cultivable bajo cubierta, a la que se le han estudiado algunos caracteres organolépticos, composición química y posibles aplicaciones hortícolas

    High-energy-resolution molecular beams for cold collision studies

    Full text link
    Stark deceleration allows for precise control over the velocity of a pulsed molecular beam and, by the nature of its limited phase-space acceptance, reduces the energy width of the decelerated packet. We describe an alternate method of operating a Stark decelerator that further reduces the energy spread over the standard method of operation. In this alternate mode of operation, we aggressively decelerate the molecular packet using a high phase angle. This technique brings the molecular packet to the desired velocity before it reaches the end of the decelerator; the remaining stages are then used to longitudinally and transversely guide the packet to the detection/interaction region. The result of the initial aggressive slowing is a reduction in the phase-space acceptance of the decelerator and thus a narrowing of the velocity spread of the molecular packet. In addition to the narrower energy spread, this method also results in a velocity spread that is nearly independent of the final velocity. Using the alternate deceleration technique, the energy resolution of molecular collision measurements can be improved considerably.Comment: 12 pages, 9 figure

    Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Get PDF
    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics

    Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film

    Get PDF
    Environmental molecular beam experiments are used to examine water interactions with liquid methanol films at temperatures from 170 K to 190 K. We find that water molecules with 0.32 eV incident kinetic energy are efficiently trapped by the liquid methanol. The scattering process is characterized by an efficient loss of energy to surface modes with a minor component of the incident beam that is inelastically scattered. Thermal desorption of water molecules has a well characterized Arrhenius form with an activation energy of 0.47{\pm}0.11 eV and pre-exponential factor of 4.6 {\times} 10^(15{\pm}3) s^(-1). We also observe a temperature dependent incorporation of incident water into the methanol layer. The implication for fundamental studies and environmental applications is that even an alcohol as simple as methanol can exhibit complex and temperature dependent surfactant behavior.Comment: 8 pages, 5 figure

    Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ticks are regarded as the most relevant vectors of disease-causing pathogens in domestic and wild animals. The cattle tick, <it>Rhipicephalus </it>(<it>Boophilus</it>) <it>microplus</it>, hinders livestock production in tropical and subtropical parts of the world where it is endemic. Tick microbiomes remain largely unexplored. The objective of this study was to explore the <it>R. microplus </it>microbiome by applying the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) technique to characterize its bacterial diversity. Pyrosequencing was performed on adult males and females, eggs, and gut and ovary tissues from adult females derived from samples of <it>R. microplus </it>collected during outbreaks in southern Texas.</p> <p>Results</p> <p>Raw data from bTEFAP were screened and trimmed based upon quality scores and binned into individual sample collections. Bacteria identified to the species level include <it>Staphylococcus aureus, Staphylococcus chromogenes, Streptococcus dysgalactiae, Staphylococcus sciuri, Serratia marcescens, Corynebacterium glutamicum</it>, and <it>Finegoldia magna</it>. One hundred twenty-one bacterial genera were detected in all the life stages and tissues sampled. The total number of genera identified by tick sample comprised: 53 in adult males, 61 in adult females, 11 in gut tissue, 7 in ovarian tissue, and 54 in the eggs. Notable genera detected in the cattle tick include <it>Wolbachia</it>, <it>Coxiella</it>, and <it>Borrelia</it>. The molecular approach applied in this study allowed us to assess the relative abundance of the microbiota associated with <it>R. microplus</it>.</p> <p>Conclusions</p> <p>This report represents the first survey of the bacteriome in the cattle tick using non-culture based molecular approaches. Comparisons of our results with previous bacterial surveys provide an indication of geographic variation in the assemblages of bacteria associated with <it>R. microplus</it>. Additional reports on the identification of new bacterial species maintained in nature by <it>R. microplus </it>that may be pathogenic to its vertebrate hosts are expected as our understanding of its microbiota expands. Increased awareness of the role <it>R. microplus </it>can play in the transmission of pathogenic bacteria will enhance our ability to mitigate its economic impact on animal agriculture globally. This recognition should be included as part of analyses to assess the risk for re-invasion of areas like the United States of America where <it>R. microplus </it>was eradicated.</p

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    Is it possible to detect gravitational waves with atom interferometers?

    Get PDF
    We investigate the possibility to use atom interferometers to detect gravitational waves. We discuss the interaction of gravitational waves with an atom interferometer and analyze possible schemes
    corecore