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Abstract

Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the
surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for
high-grade glioma -HG- and Gasc for low-grade glioma -LG-) that, although not tumorigenic, act supporting the biological
aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating
cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions
with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor
progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were
investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy,
while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force
microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-
stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength
of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly
adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that
the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect
glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the
importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.
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Introduction

Glioma is the most common primary malignant tumor of the

central nervous system and despite recent advances in treatment

regimens, the prognosis for affected patients remains still poor [1].

According to WHO classification gliomas can be divided into

high-grade gliomas (HGG: anaplastic glioma- grade 3 and

glioblastoma - grade 4) and low-grade gliomas (LGG: grade 1

and 2) [1]. Despite optimal treatment, the median survival is 12 to

15 months for patients with glioblastoma and 2 to 5 years for

patients with anaplastic glioma [2]. With respect to HGG, LGG

grows slowly, but about 70% of grade 2 gliomas evolve to

anaplasia, leading to death within 5–10 years [3–5]. The highly

lethal nature of this tumor partly originates from its invasive

characteristics, which allow tumor cells to migrate and infiltrate

eloquent areas making impossible the achievement of a radical

surgery. Such invasive disease is therefore considered incurable

using the treatment modalities presently available [6]. For these

reasons, identifying the invasive behavior of glioma may provide

diagnostic and prognostic markers, as well as innovative candidate

for therapeutic targets. In most carcinomas, it was observed that

non-tumor cells (i.e. fibroblast) are present and can favor tumor

proliferation, invasion and metastasis [7]. Recently, we have

provided evidence of the presence, within human glioma tissues, of

a novel class of glioma-associated-stem-cells (defined as GASC for

HGG and Gasc for LGG) that grow in adhesion on fibronectin

[8]. These cells are devoid of the genetic alterations characterizing

glioma tissues, display stem cell features, aberrant growth
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properties and the ability to modify in vitro the biological features

of glioblastoma cells, affecting their growth kinetics, motility and

anchorage-independent growth [9]. GASC/Gasc are therefore

different from the glioma-initiating-stem cells (defined as GSC for

HG and Gsc for LG) that grow in adhesion on laminin and are

described as tumor-derived cells able, once transplanted into

immunocompromised mice, to give rise to a tumor that is the

phenocopy of the patient’s one [10–12]. Consequently, we

proposed that glioma-associated-stem cells could contribute to

the development of a microenvironment that serves as a support

for migrating glioma cells [8].

However the mechanism behind the interaction between

glioma-initiating cells and glioma-associated-stem cells, likely to

play a key role in the tumor progression and invasion, is still not

clear. It is known that migrating cancer cells undergo considerable

molecular and cellular changes by remodeling cell-cell and cell-

matrix adhesion and cytoskeleton organization [13–17]. Recent

studies have demonstrated that a high cytoskeleton reorganization

can affect cell mechanical properties [18–22]. Highly motile

cancer cells are frequently accompanied by a significant cell

softening compared with their healthy counterparts [23,24] Hence

cell adhesion and mechanical features can be considered tightly

coupled with the migration process of the cancer cells.

A combined analysis of mechanical and adhesion features of

glioma-initiating stem cells with their associated-stem cells can

reveal new information about adhesion and migration ability of

these cancer cells. Such features have been investigated and

quantified by co-culture experiments monitored by fluorescence

microscopy and atomic force microscopy (AFM): nanoindentation

and single cell force spectroscopy (SCFS). These two modalities

enable to perform measurements on single living cells in near-

physiological conditions with force resolution down to few pN (i.e.

the rupture force of a single hydrogen bond) [24–27]. They have

been demonstrated to be an effective tool to investigate cell-cell

and cell-matrix adhesion [25,28–31], cell stiffness [32], cytoskel-

eton dynamic [19,33], specific and non-specific interactions of the

cell membrane [34–36], which are also involved in tumor cell

invasion [37]. Particularly, SCFS allows observing short-term

behavior of the cell adhesion process, while standard assays

commonly used to study cell adhesion require long time periods

(from tens of minutes up to many hours) [34].

In this work we have investigated the mechanical properties of

HGG and LGG and the intercellular adhesion of cell sub-

populations (GASC, GSC, Gsc and Gasc). Cell-cell adhesion

within LGGs and HGGs of isolated sub-populations are analyzed

and compared with the inter-populations interactions of GSC with

Gasc.

Materials and Methods

Cell Culture
A detailed description of the protocol used for isolation and

culture of glioma cells from patients is reported in ref [12] and

supporting information (File S1). The independent ethic commit-

tee of the Azienda Ospedaliero-Universitaria of Udine has

approved the research. Informed written consents have been

obtained from patients and all clinical investigations have been

conducted according to the principles expressed in the Declaration

of Helsinki.

Time-lapse Microscopy to quantify cell adhesion
In order to evaluate the adhesion of glioma-initiating stem cells

on the glioma-associated- stem cells, 104 GASC and Gasc cells

were seeded in 96-well plates (Black/Clear Imaging Plate, BD-

Falcon) for 24 hours and then stained by 5 mM CellTrace CFSE

(5(6)-Carboxyfluorescein N-hydroxysuccinimidyl ester, Invitrogen)

following manufacturer instructions. GSC and Gsc cells were

detached by Tryple (Invitrogen), labelled by 3.25 mM Hoechst

33342 fluorescent solution for 20 min at 37uC and finally plated

on the GASC and/or Gasc monolayers (36103 cells/well). Cells

were kept in 5%O2/5%CO2 incubator at 37uC. GSC and Gsc

adhesion to the cell monolayer was evaluated at 30, 60, 90, 120,

180 minutes from cell seeding. Specifically, at each time point

selected wells were washed and after the addition of fresh medium

images of Hoechst-labeled nuclei as well as phase contrast image

and/or CFSE-positive cells were taken by a Leica DMI 6000B

microscope connected to a Leica DFC350FX camera (10X

objective). Images were then overlaid by Image J in order to

evaluate the number of Hoechst positive cells adherent to GASC/

Gasc cells as recognized by either phase contrast image or CFSE

positivity. In the case of GSC line (n = 2) forming spontaneously

aggregates, these latter were quantified as single cells, hypothesiz-

ing that only one cell was indeed adherent to the GASC/Gasc cells

while the others were adherent to each other. All the time points

were evaluated in triplicate for each specified condition. We

compared the adhesion of Gsc on Gasc (n = 9) and of GSC on

both GASC (n = 7) and Gasc (n = 7).

AFM experiments
AFM-indentation and SCFS measurements were performed on

cells deriving from different patients (n = 3) and cells were

generally used at passage 2. SCFS and nanoindentation measure-

ments were performed using a NanoWizard AFM (JPK Instru-

ments, Berlin, Germany) mounted on top of an Axiovert 200

inverted microscope (Carl Zeiss, Jena, Germany). SCFS was

performed using a CellHesion module (JPK Instruments, Berlin,

Germany) that enables to extend the vertical range of the AFM

from 15 mm up to 100 mm to enable complete cell detachment

from substrate. All experiments were performed at 37uC using a

temperature-controlled BioCell chamber (JPK Instruments, Ber-

lin, Germany). Details about cell adhesion and elasticity measure-

ments are reported in supporting information (File S1).

Data analysis
The cell adhesion features were obtained by analyzing the

retraction curve of force-distance (F-D) curves with the JPK data

processing software. Cell mechanical properties were obtained by

evaluating the Young’s modulus (E) of the cell. This value was

evaluated by analyzing the approaching part of the recorded F-D

curves using the JPK DP software. With this option, the software

converted the approaching curve into force-indentation curves by

subtracting the cantilever bending from the signal height to

calculate indentation. Then the fit function described by Hertz-

Sneddon model was used (four-sided pyramid as indenter) [38].

To compare the mechanical properties of the different cell sub-

populations the measurements were performed at fixed speed

(5 mm/sec) and mathematical fits are performed at fixed inden-

tation depth (500 nm): indeed absolute E values were observed to

depend significantly on the specific choice of these parameters

[16], however, keeping these parameters constant for all exper-

iments, relative E variations were obtained. [16].

Statistical analysis
The difference in adhesion of GSC on GASC, Gsc on Gasc and

GSC on Gasc, respectively, was evaluated by two-way ANOVA

followed by Bonferroni post-test. For SCFS data the statistical

difference between two groups of data was evaluated by using the

non-parametric statistical analysis of the Mann–Whitney test (two-
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tailed distribution). Histograms of Young’s modulus values were

obtained by Origin Pro 8.1. The difference in stiffness between

groups of data for cell sub-populations was evaluated by non-

parametric Kruskal-Wallis test with Dunn’s multiple comparison

test to compare all pairs of column. In all cases, the statistical

analysis was performed by GraphPad Prism 5.0. A p value,0.05

was considered statistically significant.

Results

Firstly the cellular adhesion of GSC on GASC; Gsc on Gasc

and GSC on Gasc is investigated by co-culturing cells up to 3

hours. Short time lapses have been selected to investigate early

stage of adhesion after seeding and for a better comparison with

SCFS experiments. As shown in Fig. 1A, the number of Hoechst-

labeled GSC and Gsc adherent to the GASC and Gasc are

observed at different time points (30, 60, 90, 120 and 180 min-

utes). Quantitative analysis of the adherent cells demonstrates

significant differences depending on the cell type involved in the

interaction (Fig. 1B). Specifically, a significantly higher number of

Gsc adhere to Gasc when compared to the number of GSC

adherent to GASC (Fig. 1B). However, comparing the number of

adherent GSC on Gasc with that obtained for GSC on GASC, a

significantly superior number of GSC adhere to Gasc, indepen-

dently from the time point considered (Fig. 1B). In order to

evaluate the mechanical properties (deformability) of the different

cellular sub-populations, AFM-indentation measurements are

performed. In this case an isolated cell is selected out of a cell

culture on protein coated coverslip (fibronectin for GASC/Gasc

and laminin for GSC/Gsc) using an optical microscope; subse-

quently the AFM tip (i.e. the indenter) is approached in close

proximity of the cell nuclear region and force-distance (F-D)

Figure 1. Co-culture of GSC on GASC, Gsc on Gasc and GSC on Gasc. (A) Fluorescence images of Hoechst-labeled glioma-initiating cells (red
color) on CFSE-labeled glioma associated cells (green color) at different time point (scale bar 200 mm). (B) Quantitative analysis of the number of GSC
adherent to GASC (red line), Gsc adherent to Gasc (black line) and GSC adherent to Gasc (blue line), respectively. Cell type: p,0.0001, time: p = 0.09.
Data are presented as mean 6 standard error. *, p,0.05 of GSC-GASC vs Gsc-Gasc; **, p,0.05 of GSC-GASC vs GSC-Gasc.
doi:10.1371/journal.pone.0112582.g001
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Figure 2. AFM indentation measurements and analysis of each cell subpopulation. (A–D) Examples of F-D approaching curves converted
into a dependence of load force versus indentations for each cell populations. (E–H) Young’s modulus distribution obtained for each cell population.
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curves are taken. The approaching curves are then converted into

force indentation and some examples of those obtained on the four

different cell subpopulations are shown in Fig. 2A–D. When a

force load is applied to a stiff cell the indentation depth is smaller

and the slope of the F-D curve is larger than that observed for a

soft cell. By fitting the force-indentation curve with the Hertz-

Sneddon model [38,39], the E value, characterizing the cell

stiffness, can be obtained. E values for each cell sub-populations

are plotted in the histograms of Fig. 2E–H. Both GSC and Gsc are

characterized by a narrow peak at 0.3 kPa, even if Gsc show a

broader long tail with E values as high as 8 kPa. On the contrary

GASC and Gasc show a wide E distribution with values ranging

from 0.3 kPa up to 9 kPa, where the peak at 0.3 kPa is

considerably decreased and an average rigidity of 3 kPa- (10

times higher than that observed for cancer cells) can be observed.

These data indicate that GASC/Gasc are characterized by a wide

mechanical heterogeneity. The statistical analysis demonstrates

that GASC/Gasc are significantly stiffer than GSC/Gsc. More-

over, although GSC share with Gsc a high component at low

elastic modulus value, the statistical analysis indicates that GSC

are softer than Gsc. These results are in agreement with the non-

cancer activity and the supporting role of GASC and Gasc as

respect to the GSC and Gsc, whose higher deformability is instead

in agreement with their neoplastic character [23,24]. The force

interactions between cancer cells and glioma-associated stem cells,

both for LGG and HGG are measured and quantified by SCFS.

With the help of an optical microscope a single cell (either GSC or

Gsc) is picked up by a tipless AFM cantilever functionalized with

concanavalin-A. This protein, able to non selectively bind most of

the glycoproteins and glycolipids present on the cell membrane,

firmly immobilize the glioma cell without influencing its state

during measurements. The use of the optical microscope enables

A p value,0.05 is considered statistically significant. GSC and Gsc are significantly softer than GASC and Gasc (p,0.0001); GSC appear also
significantly softer than Gsc (p,0.01), while GASC and Gasc do not show significant difference.
doi:10.1371/journal.pone.0112582.g002

Figure 3. Cell-cell adhesion measurements. (A) Differential interference contrast (DIC) optical image of a GSC immobilized on a tipless cantilever
brought into contact with a GASC cultured on glass coverslip coated with fibronectin (scale bar 20 mm); representative F-D retraction traces acquired
for GSC-GASC (B) and Gsc-Gasc (C) for 10 sec contact time; features of the curves that enables to quantify adhesion properties are highlited: the
maximum force exerted to detach the cell (Fdetachment); the area, included within the retraction curve and the dot line, represents the work done by
the cantilever to completely detach the cell from the substrate (work of detachment).
doi:10.1371/journal.pone.0112582.g003
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to monitor the cell during the measurements, which are

interrupted as soon as changes in cell morphology are observed.

The cantilever-mounted cell is approached to an isolated cultured

cell (either GASC or Gasc) until a 0.5 nN contact force is

established. Fig. 3A shows a representative optical image of a GSC

immobilized on a functionalized cantilever brought into contact

with a GASC cultured on fibronectin coated coverslip. After a

predefined contact time, the cantilever-mounted cell is retracted,

until the cell is fully detached from the cultured cell. The force

with respect to the cantilever position is recorded and F-D curves

are obtained. These measurements are performed for increasing

contact time (10, 40, 160 sec) and repeated on several cells, by

contacting always the body of the cell in correspondence of the

nuclear region to minimize the adhesion differences due to the

contact with different cellular area. Representative retraction

traces of F-D curves resulting from GSC-GASC and Gsc-Gasc

interaction are shown in Fig. 3B and C. The analysis of these

curves provides quantitative values of the detachment force

obtained as the higher adhesion force and the mechanical work

done to detach the cell (i.e., detachment energy), which is obtained

by integrating the area enclosed by the retraction force curve and

the x axis (dot line) (as indicated in Fig. 3C). Same SCFS

measurements are performed also for GSC and Gsc brought into

contact with either laminin or fibronectin coating to analyze the

Figure 4. Time dependent analysis of detachment force and work. (A–B) Data obtained for GSC-GASC compared with GSC-laminin and GSC-
fibronectin and (C–D) Gsc-Gasc compared with Gsc-laminin and Gsc-fibronectin; the values inside the box represent the first (25%) and third quartile
(75%), while the line within the box represents the median value (50%); the (–) indicate the maximum and minimum observations; while outliers are
indicated by (N); the mean value is indicated in the plot as (+); (*) p value,0.05 is considered statistically significant. (A–B) Detachment force and
work of GSC-laminin are significantly higher than that obtained for GSC-GASC or GSC-fibronectin for each contact time investigated (p,0.0001); No
significant differences are obtained between GSC-GASC and GSC-fibronectin, except for work of detachment at 160 sec (p = 0.0097). (C–D) The
detachment force of Gsc-laminin is higher than that obtained for Gsc-Gasc (p,0.00001 for 10 sec and 40 sec, p = 0.0118 for 160 sec) and Gsc-
fibronectin (p,0.00001 for 10 sec and 40 sec, p = 0.0005 for 160 sec). The work of detachment of Gsc-laminin is significantly higher than that
obtained for Gsc-Gasc (p = 0.0042) at 10 sec and (p = 0.0006) at 40 sec contact time, while at 160 sec they are no significantly different (p = 0.1167);
the work of detachment of Gsc-laminin is higher than that obtained for Gsc-fibronectin for all the contact time investigated (p = 0.0004 for 10 sec, p,
0.0001 for 40 sec, p = 0.0006 for 160 sec). No significant differences were obtained between Gsc-Gasc and Gsc-fibronectin, except for work of
detachment at 160 sec (p = 0.0004). For a better visualization and comparison of the data, Y scale is reported as Log scale.
doi:10.1371/journal.pone.0112582.g004
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adhesion strength of cancer cells on both their own culture

substrates (laminin) and non-specific substrate (fibronectin). In

Fig. 4 the values of detachment force and work obtained at

increasing contact time for GSC on GASC (A and B) and Gsc on

Gasc (C and D) are plotted in comparison with data obtained for

GSC/Gsc on laminin and GSC/Gsc on fibronectin. At each

contact time both force and work detachment of GSC on GASC

appear to be significantly lower than that observed for GSC on

laminin (see Fig. 4A and B) and comparable with those observed

for GSC on fibronectin. Indeed significant differences between

GSC on GASC and GSC on fibronectin are observed only for

work of detachment at 160 sec contact time. Analogous results are

obtained for the LGG form (Fig. 4C and D). The high affinity of

GSC and Gsc for laminin as respect to that obtained on

fibronectin is in agreement with their inability to growth and

proliferate on fibronectin [8]. These data suggest that cancer

Figure 5. Interpopulation adhesion measurements. Comparison of time dependent detachment force (A) and work of detachment (B)
evaluated for Gsc-Gasc, GSC-Gasc and GSC-GASC; (*) p value,0.05 is considered statistically significant. (A) The detachment force of GSC-GASC is
higher than that of Gsc-Gasc (p,0.0001 at 10 sec and 40 sec, p = 0.0003 at 160 sec). Detachment force of GSC-Gasc increases significantly as
compared to HGG (10 sec p = 0.0267; 40 sec p,0.0001; 160 sec p = 0.0014). (B) For work of detachment at 10 sec contact time no significant
differences are detected; for higher contact time (40 sec) Gsc-Gasc is significantly higher than GSC-GASC (p = 0.0068) as also the increment of GSC-
Gasc as compared to GSC-GASC (p,0.0001); for 160 sec Gsc-Gasc is significantly higher than GSC-GASC (p = 0.0006) as also the increment for GSC-
Gasc as compared to GSC-GASC (p,0.0001). For a better visualization and comparison of the data, Y scale is reported as Log scale.
doi:10.1371/journal.pone.0112582.g005
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initiating-stem cells have a very low affinity for their supporting

cells. It is worth to notice that for the case of Gsc on Gasc, the

adhesion properties appear to be widely spread, and at 160 sec

contact time no significant differences with the detachment energy

of Gsc on laminin could be observed (see Fig. 4D). The latter

phenomenon suggests the presence of considerable variability

within the cell sub-population, as also observed for wide

distribution of the elastic properties of the Gsc (see Fig. 3). In

Fig. 5, we compare the detachment force (A) and work (B)

obtained for Gsc on Gasc, and GSC on GASC with data obtained

for the cross-population measurements GSC on Gasc. In this latter

case adhesion experiments are performed by immobilizing a single

GSC on the cantilever, which is made to interact with a cultured

Gasc at a controlled force for increasing contact time. Here the

adhesion strength for GSC on GASC is generally lower than that

observed for Gsc on Gasc, except for the work of detachment at

low contact time where no differences are found. Instead, the

adhesion strength of GSC on Gasc considerably increases respect

to GSC on GASC with increasing contact time. At 160 sec contact

time the adhesion strength of Gsc on Gasc is 2.3263.88 nN (mean

6 sd) and adhesion energy 24.6629 fJ, for GSC on GASC is

0.3760.52 nN and adhesion energy 5.663.1 fJ, while for GSC on

Gasc they are found to be 0.8260.52 nN and 23.6612.9 fJ,

respectively. These results confirm that the Gasc are able to

enhance and promote the adhesion of highly aggressive GSC. To

determine whether a different surface protein pattern could be

responsible of the detected differences we perform FACS and

immunofluorescence analysis of GASC and Gasc (see File S1). It is

found that although GASC and Gasc share a similar surface

phenotype, some proteins are differently expressed (see Table S1

in File S1). Specifically, GASC and Gasc differ not only for the

expression of stem-cell related markers such as CD133, but also in

proteins involved in cell-cell adhesion processes and tumor growth:

E-Cadherin (up-regulated in GASC), CD44 and CD105 (up-

regulated in Gasc). The different combination of such receptors

could be involved in the increased high affinity of GSC for Gasc.

Discussion

The understanding of the mechanisms activating and promot-

ing the migration of glioma cancer cells into the brain tissue is a

fundamental issue to find effective diagnostic tools and alternative

treatments to the currently used chemotherapy in order to stop the

progress of the disease. Very recently, in the study of cancer

migration and invasion particular attention has been devoted to

the mechanics of the cancer cells (i.e. adhesion and elastic

properties) [40] that beside classical biochemical investigations can

improve the knowledge of mechanisms regulating cell migration.

The physical interactions of cancer cells with the diverse

microenvironments (as extracellular matrix and surrounding cells),

encountered during the metastatic process, can have a key role in

cancer spreading [23].

In order to get a better understanding of glioma cell interactions

with their surrounding environment we have investigated and

quantified the mechanical properties and adhesion behavior of

glioma-initiating stem cells and non tumorigenic glioma-associated

stem cell isolated from HGG and LGG by using time-lapse

microscopy, SCFS and nanoindentation AFM. The combination

of optical microscopy studies with single molecule techniques,

which provide quantitative information about the mechanics of

the cell, can allow an extensive investigation of cell-cell interaction.

Elastic measurements demonstrate that the cancer cells are softer

than glioma-associated stem cells both for HGG and LGG form.

The increment in deformability is observed for various cancer cell

lines [18,23,24,41] and it is frequently accompanied by alterations

of cytoskeleton organization that are known to be also associated

with neoplastic transformation [41]. In addition, elastic features

appear to be mainly affected by the actin filaments [18], which are

highly reorganized in the cytoskeleton of motile cells, being also

involved in the formation of migrating cell structures as

lamellipodia and filopodia [42,43]. These findings confirm the

supporting non-tumor characteristics of glioma-associated stem

cells, in agreement with our in vivo studies [8], while the higher

deformability of the cancer cells may suggest a higher motile

character. Moreover, both GASC and Gasc, although showing a

broad range of stiffness values, are not mechanically distinguish-

able, in agreement with the results of genotype and phenotype

studies, which found negligible difference in spite of the dramatic

differences observed in the progress of the disease [8]. On the

contrary, GSC and Gsc show a more pronounced difference:

although both have a major component at low E value, the Gsc

present a very long tail up to 9 kPa, that might suggest a non-

homogenous state of this cell population as compared to GSC.

Regarding the cell-cell adhesion, co-culturing experiments dem-

onstrate that HGG and LGG cancer initiating-stem cell and

glioma-associated stem cells have different adhesion behavior. The

adhesion of GSC on GASC appears to be significantly lower than

that observed for Gsc on Gasc. These results demonstrate that the

highly aggressive GSC establish weak interactions with their

supporting associated-stem cells. Moreover, they point into

evidence that HGG shows a cell-cell adhesion profile (both for

detachment force and work) more uniform than that observed for

the LGG. The cell adhesion variability is a feature already

observed in SCFS data and it was demonstrated that this behavior

does not depend on cell cycle phase, but originates predominantly

from cell to cell variations [44]. However, in our measurements

this variability for the LGG could be also associated with the

elastic properties of Gsc. The long tail observed in the distribution

of Gsc E values suggests that a small percentage of Gsc has lower

deformability and as result in the adhesion measurements the cell

could contact larger or smaller surface area for same contact force

load applied. On the contrary, Gasc are observed to favor the

adhesion of GSC increasing the number of adherent cells. Indeed

after short time seeding (30 minutes) in co-culture experiment, the

number of GSC adherent on Gasc is 63% higher than that

observed on the GASC. SCFS data support this behavior even on

shorter scale time (few seconds up 3 minutes). When GSC are

brought in contact with Gasc, the cell-cell adhesion strength

increases, resembling the adhesion behavior observed for the cell-

cell interaction of the LG form. These results confirm that Gasc

are able to increase the adhesion of highly aggressive GSC. In this

case, we can rule out any effect of cellular elasticity on adhesion.

Indeed, the difference in elasticity alone between GSC and Gsc

subpopulations cannot explain the considerable increment in

adhesion observed (see Fig. S1 in File S1). Hence, as suggested by

the phenotypic analysis of the surface expression markers, this

difference in the adhesion behavior might derive from the different

combination of the surface receptors of Gasc and GASC. Our

findings underline that intercellular adhesion can play an active

role in determining final adhesion behavior that could affect

migration ability of cancer cells.

In conclusion, we have shown that glioma-initiating stem cells

and glioma-associated stem cells isolated from human glioma

tissue have a different deformability, likely related to their

neoplastic and non-neoplastic character. We have also demon-

strated that highly aggressive cancer cells adhere more strongly on

low aggressive associated-stem cells, already at very short time

scale (few seconds). The combination of these findings highlight
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that cell mechanics can play a crucial role in tumor diffusion and

that the investigation of these properties could represent an

alternative strategy to identify the molecular pathway responsible

for tumor invasiveness. Indeed further experiments with specific

knock-down of those receptors differently expressed in GASC and

Gasc could help in identifying the adhesion molecules favoring

cancer cells migration and spreading.

Supporting Information

File S1 Detailed description of methodologies and
measurements performed: Cell culture. Flow cytometry

and immunofluorescence procedures. AFM indentation measure-

ments. On the role played by cell elasticity on SCFS measure-

ments. SCFS measurements. Table S1 in File S1: Surface

immunophenotype of GASC and Gasc. Results are expressed as

percentage of cells expressing the assessed marker. Student t-test:

significance p,0.05. Figure S1 in File S1: SCFS measurements of

GASC/Gasc subpopulation on fibronectin. Comparison of the

detachment forces obtained for GASC on fibronectin and Gasc on

fibronectin for increasing contact time (For a better visualization

and comparison of the data, Y scale is reported as Log scale). No

significant differences are observed for all the contact times

investigated.
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