We describe the production of cold, slow-moving LiH molecules. The molecules
are produced in the ground state using laser ablation and supersonic expansion,
and 68% of the population is transferred to the rotationally excited state
using narrowband radiation at the rotational frequency of 444GHz. The molecules
are then decelerated from 420m/s to 53m/s using a 100 stage Stark decelerator.
We demonstrate and compare two different deceleration modes, one where every
stage is used for deceleration, and another where every third stage decelerates
and the intervening stages are used to focus the molecules more effectively. We
compare our experimental data to the results of simulations and find good
agreement. These simulations include the velocity dependence of the detection
efficiency and the probability of transitions between the weak-field seeking
and strong-field seeking quantum states. Together, the experimental and
simulated data provide information about the spatial extent of the source of
molecules. We consider the prospects for future trapping and sympathetic
cooling experiments.Comment: 14 pages, 6 figures; minor revisions following referee suggestion