178 research outputs found

    Setting international standards for patient and parent involvement and engagement in childhood, adolescent and young adult cancer research: A report from a European Collaborative Workshop

    Get PDF
    BACKGROUND: Patient and Public Involvement and Engagement (PPIE) in research, advocates for research conducted ‘with’ not ‘for’ the affected population. In paediatric oncology research, the parents of children, adolescents and young adults affected by cancer are represented by the term ‘public’ in the acronym PPIE. Patients (those with cancer and cancer survivors) are also passionate advocates who drive forward the research priorities of children, adolescents and young adults throughout the entire research process. AIMS: A workshop was held at an international professional meeting in 2019 with the aim to define Patient and Parent Involvement and Engagement (PPIE); capture PPIE activities on a European level; and to explore the role of PPIE in non-interventional research. A proposed framework for a European PPIE strategy for childhood, adolescent and young adult cancers was also discussed. METHODS: The 60-minute workshop was attended by health care professionals, researchers, scientists, parents, survivors and charity/support organisations. A presentation to define PPIE, including the difference in terminology for PPIE in the context of childhood, adolescent, and young adult cancers was discussed. Best practice examples from the United Kingdom (UK) helped to demonstrate the positive impact of PPIE in paediatric oncology research. Three breakout groups then explored themes relating to PPIE, namely PPIE priorities, PPIE mapping for Europe, and PPIE in non-interventional research and data-linkage. RESULTS: Disparity in PPIE activities across Europe was evident, with ambiguity surrounding terminology and expected roles for PPIE representatives in paediatric oncology research. A lack of PPIE activity in Eastern Europe correlated with a lack of availability for clinical trials and poorer survival rates for paediatric oncology patients. There was unanimous support for PPIE embedded research in all areas, including in non-interventional studies. CONCLUSION: A European-level definition of PPIE for paediatric oncology research is needed. Further exploration into the role and responsibilities of patients, parents, and professionals when undertaking PPIE related activities is also recommended. Best practice examples from the UK, France, Germany, The Netherlands and Belgium demonstrated a preliminary evidence base from which a European PPIE strategy framework can be designed, inclusive of the patient and parent voice

    BAZ1B in Nucleus Accumbens Regulates Reward-Related Behaviors in Response to Distinct Emotional Stimuli

    Get PDF
    ATP-dependent chromatin remodeling proteins are being implicated increasingly in the regulation of complex behaviors, including models of several psychiatric disorders. Here, we demonstrate that Baz1b, an accessory subunit of the ISWI family of chromatin remodeling complexes, is upregulated in the nucleus accumbens (NAc), a key brain reward region, in both chronic cocaine-treated mice and mice that are resilient to chronic social defeat stress. In contrast, no regulation is seen in mice that are susceptible to this chronic stress. Viral-mediated overexpression of Baz1b, along with its associated subunit Smarca5, in mouse NAc is sufficient to potentiate both rewarding responses to cocaine, including cocaine self-administration, and resilience to chronic social defeat stress. However, despite these similar, proreward behavioral effects, genome-wide mapping of BAZ1B in NAc revealed mostly distinct subsets of genes regulated by these chromatin remodeling proteins after chronic exposure to either cocaine or social stress. Together, these findings suggest important roles for BAZ1B and its associated chromatin remodeling complexes in NAc in the regulation of reward behaviors to distinct emotional stimuli and highlight the stimulus-specific nature of the actions of these regulatory proteins

    Detection of a gammaretrovirus, XMRV, in the human population: Open questions and implications for xenotransplantation

    Get PDF
    XMRV (xenotropic murine leukaemia virus-related virus) is a gammaretrovirus that has been detected in human patients with prostate carcinoma, chronic fatigue syndrome (CFS) and also in a small percentage of clinically healthy individuals. It is not yet clear whether the distribution of this virus is primarily limited to the USA or whether it is causally associated with human disease. If future investigations confirm a broad distribution of XMRV and its association with disease, this would have an impact on xenotransplantation of porcine tissues and organs. Xenotransplantation is currently being developed to compensate for the increasing shortage of human material for the treatment of tissue and organ failure but could result in the transmission of porcine pathogens. Maintenance of pathogen-free donor animals will dramatically reduce this risk, but some of the porcine endogenous retroviruses (PERVs) found in the genome of all pigs, can produce infectious virus and infect cultured human cells. PERVs are closely related to XMRV so it is critical to develop tests that discriminate between them. Since recombination can occur between viruses, and recombinants can exhibit synergism, recipients should be tested for XMRV before xenotransplantation

    Connecting climate action with other sustainable development goals

    Get PDF
    The international community has committed to combat climate change and achieve 17 Sustainable Development Goals (SDGs). Here we explore (dis)connections in evidence and governance between these commitments. Our structured evidence review suggests that climate change can undermine 16 SDGs, while combatting climate change can reinforce all 17 SDGs but undermine efforts to achieve 12. Understanding these relationships requires wider and deeper interdisciplinary collaboration. Climate change and sustainable development governance should be better connected to maximize the effectiveness of action in both domains. The emergence around the world of new coordinating institutions and sustainable development planning represents promising progress

    Anthrax Edema Toxin Modulates PKA- and CREB-Dependent Signaling in Two Phases

    Get PDF
    Background: Anthrax edema toxin (EdTx) is an adenylate cyclase which operates in the perinuclear region of host cells. However, the action of EdTx is poorly understood, especially at molecular level. The ability of EdTx to modulate cAMPdependent signaling was studied in Jurkat T cells and was compared with that of other cAMP-rising agents: Bordetella pertussis adenylate cyclase toxin, cholera toxin and forskolin. Methodology/Principal Findings: EdTx caused a prolonged increase of the intracellular cAMP concentration. This led to nuclear translocation of the cAMP-dependent protein kinase (PKA) catalytic subunit, phosphorylation of cAMP response element binding protein (CREB) and expression of a reporter gene under control of the cAMP response element. Neither p90 ribosomal S6 kinase nor mitogen- and stress-activated kinase, which mediate CREB phosphorylation during T cell activation, were involved. The duration of phospho-CREB binding to chromatin correlated with the spatio-temporal rise of cAMP levels. Strikingly, EdTx pre-treated T cells were unresponsive to other stimuli involving CREB phosphorylation such as addition of forskolin or T cell receptor cross-linking. Conclusions/Significance: We concluded that, in a first intoxication phase, EdTx induces PKA-dependent signaling, which culminates in CREB phosphorylation and activation of gene transcription. Subsequently CREB phosphorylation is impaired and therefore T cells are not able to respond to cues involving CREB. The present data functionally link the perinuclea

    Expression of oestrogen receptors, ERα, ERβ, and ERβ variants, in endometrial cancers and evidence that prostaglandin F may play a role in regulating expression of ERα

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endometrial cancer is the most common gynaecological malignancy; risk factors include exposure to oestrogens and high body mass index. Expression of enzymes involved in biosynthesis of oestrogens and prostaglandins (PG) is often higher in endometrial cancers when compared with levels detected in normal endometrium. Oestrogens bind one of two receptors (ERα and ERβ) encoded by separate genes. The full-length receptors function as ligand-activated transcription factors; splice variant isoforms of ERβ lacking a ligand-binding domain have also been described. PGs act in an autocrine or paracrine manner by binding to specific G-protein coupled receptors.</p> <p>Methods</p> <p>We compared expression of ERs, progesterone receptor (PR) and cyclooxygenase-2 (COX-2) in stage 1 endometrial adenocarcinomas graded as well (G1), moderately (G2) or poorly (G3) differentiated (n ≥ 10 each group) using qRTPCR, single and double immunohistochemistry. We used endometrial adenocarcinoma cell lines to investigate the impact of PGF2α on expression of ERs and PR.</p> <p>Results</p> <p>Full length ERβ (ERβ1) and two ERβ variants (ERβ2, ERβ5) were expressed in endometrial cancers regardless of grade and the proteins were immunolocalised to the nuclei of cells in both epithelial and stromal compartments. Immunoexpression of COX-2 was most intense in cells that were ERα<sup>neg/low</sup>. Expression of PR in endometrial adenocarcinoma (Ishikawa) cell lines and tissues broadly paralleled that of ERα. Treatment of adenocarcinoma cells with PGF2α reduced expression of ERα but had no impact on ERβ1. Cells incubated with PGF2α were unable to increase expression of PR mRNA when they were incubated with E2.</p> <p>Conclusion</p> <p>We have demonstrated that ERβ5 protein is expressed in stage 1 endometrial adenocarcinomas. Expression of three ERβ variants, including the full-length protein is not grade-dependent and most cells in poorly differentiated cancers are ERβ<sup>pos</sup>/ERα<sup>neg</sup>. We found evidence of a link between COX-2, its product PGF2α, and expression of ERα and PR that sheds new light on the cross talk between steroid and PG signalling pathways in this disease.</p

    Deletion of Running-Induced Hippocampal Neurogenesis by Irradiation Prevents Development of an Anxious Phenotype in Mice

    Get PDF
    Recent evidence postulates a role of hippocampal neurogenesis in anxiety behavior. Here we report that elevated levels of neurogenesis elicit increased anxiety in rodents. Mice performing voluntary wheel running displayed both highly elevated levels of neurogenesis and increased anxiety in three different anxiety-like paradigms: the open field, elevated O-maze, and dark-light box. Reducing neurogenesis by focalized irradiation of the hippocampus abolished this exercise-induced increase of anxiety, suggesting a direct implication of hippocampal neurogenesis in this phenotype. On the other hand, irradiated mice explored less frequently the lit compartment of the dark-light box test irrespective of wheel running, suggesting that irradiation per se induced anxiety as well. Thus, our data suggest that intermediate levels of neurogenesis are related to the lowest levels of anxiety. Moreover, using c-Fos immunocytochemistry as cellular activity marker, we observed significantly different induction patterns between runners and sedentary controls when exposed to a strong anxiogenic stimulus. Again, this effect was altered by irradiation. In contrast, the well-known induction of brain-derived neurotrophic factor (BDNF) by voluntary exercise was not disrupted by focal irradiation, indicating that hippocampal BDNF levels were not correlated with anxiety under our experimental conditions. In summary, our data demonstrate to our knowledge for the first time that increased neurogenesis has a causative implication in the induction of anxiety

    Efficient Targeting of Head and Neck Squamous Cell Carcinoma by Systemic Administration of a Dual uPA and MMP-Activated Engineered Anthrax Toxin

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Although considerable progress has been made in elucidating the etiology of the disease, the prognosis for individuals diagnosed with HNSCC remains poor, underscoring the need for development of additional treatment modalities. HNSCC is characterized by the upregulation of a large number of proteolytic enzymes, including urokinase plasminogen activator (uPA) and an assortment of matrix metalloproteinases (MMPs) that may be expressed by tumor cells, by tumor-supporting stromal cells or by both. Here we explored the use of an intercomplementing anthrax toxin that requires combined cell surface uPA and MMP activities for cellular intoxication and specifically targets the ERK/MAPK pathway for the treatment of HNSCC. We found that this toxin displayed strong systemic anti-tumor activity towards a variety of xenografted human HNSCC cell lines by inducing apoptotic and necrotic tumor cell death, and by impairing tumor cell proliferation and angiogenesis. Interestingly, the human HNSCC cell lines were insensitive to the intercomplementing toxin when cultured ex vivo, suggesting that either the toxin targets the tumor-supporting stromal cell compartment or that the tumor cell requirement for ERK/MAPK signaling differs in vivo and ex vivo. This intercomplementing toxin warrants further investigation as an anti-HNSCC agent

    The neurogenic effects of exogenous neuropeptide Y: early molecular events and long-lasting effects in the hippocampus of trimethyltin-treated rats.

    Get PDF
    Modulation of endogenous neurogenesis is regarded as a promising challenge in neuroprotection. In the rat model of hippocampal neurodegeneration obtained by Trimethyltin (TMT) administration (8 mg/kg), characterised by selective pyramidal cell loss, enhanced neurogenesis, seizures and cognitive impairment, we previously demonstrated a proliferative role of exogenous neuropeptide Y (NPY), on dentate progenitors in the early phases of neurodegeneration. To investigate the functional integration of newly-born neurons, here we studied in adult rats the long-term effects of intracerebroventricular administration of NPY (2 \ub5g/2 \ub5l, 4 days after TMT-treatment), which plays an adjuvant role in neurodegeneration and epilepsy. Our results indicate that 30 days after NPY administration the number of new neurons was still higher in TMT+NPY-treated rats than in control+saline group. As a functional correlate of the integration of new neurons into the hippocampal network, long-term potentiation recorded in Dentate Gyrus (DG) in the absence of GABAA receptor blockade was higher in the TMT+NPY-treated group than in all other groups. Furthermore, qPCR analysis of Kruppel-like factor 9, a transcription factor essential for late-phase maturation of neurons in the DG, and of the cyclin-dependent kinase 5, critically involved in the maturation and dendrite extension of newly-born neurons, revealed a significant up-regulation of both genes in TMT+NPY-treated rats compared with all other groups. To explore the early molecular events activated by NPY administration, the Sonic Hedgehog (Shh) signalling pathway, which participates in the maintenance of the neurogenic hippocampal niche, was evaluated by qPCR 1, 3 and 5 days after NPY-treatment. An early significant up-regulation of Shh expression was detected in TMT+NPY-treated rats compared with all other groups, associated with a modulation of downstream genes. Our data indicate that the neurogenic effect of NPY administration during TMT-induced neurodegeneration involves early Shh pathway activation and results in a functional integration of newly-generated neurons into the local circuit
    corecore