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When patients become acutely unwell, the ability of frontline healthcare professionals to act 
quickly and effectively can mean the difference between life and death. High-fidelity simulation is 
the gold standard by which medics acquire and maintain key resuscitation skills, but the resource-
intensive nature of current, face-to-face training limits access to training and allows “skills fade” to 
creep in. We propose that human computer interaction-based simulations augmented by artificial 
intelligence could provide a cost-effective alternative to traditional training and allow clinicians 
much greater access to training. This paper is mostly an in-depth discussion; however, we also 
present a 3D simulator for resuscitation skills training which we developed using the Unity games 
physics engine.   
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1. INTRODUCTION 

Much is made of the potential of emerging artificial 
intelligence (AI) technology to bring badly-needed 
innovation to the field of medicine, and yet currently 
we see little evidence of this on the wards each 
day. Part of the problem might be that the vanguard 
of this march of progress is comprised almost 
exclusively of data scientists and machine learning 
(ML) researchers, while most healthcare workers 
remain entirely ignorant of even the basic concepts 
underpinning ML and, by extension, the technology 
we commonly define as being “artificially 
intelligent”. Naturally, practitioners of ML are likely 
to gravitate towards clinical problems that present 
favourable targets for their science, for example 
single-step classification tasks in data-rich areas; 
hence, disciplines like radiology are enjoying the 
lion’s share of the attention from the ML community 
[1]. 

Here, we propose to explore the application of ML 
to a sequential decision-making task in a high 
impact but relatively data-poor area of healthcare, 
albeit – for now – within the context of a training 
application rather than a system interacting directly 
with patients. 

2. THE CLINICAL NEED 

There are over 10, 000 in-hospital cardiac arrests 
annually in the UK [2]. Outcomes for these patients 
are poor: only one in five will survive to hospital 
discharge and over half of these survivors will have 
some degree of neurological (brain) damage [3]. 
Some cardiac arrests happen “out of the blue”, due 
to sudden events such as myocardial infarction or 

pulmonary embolus, but a significant proportion will 
be preceded by a gradual deterioration in the 
patient’s condition. It has been concluded that as 
many as 5% of hospital deaths may be averted, 
largely by the prompt identification and effective 
treatment of acute illness [4,5,6,7]. The key 
question then is: how do we improve the 
recognition and treatment of the deteriorating 
patient? 

There are a range of novel technology-based 
solutions on the market but their efficacy remains 
unproven [8]; high-quality simulation training for 
clinical staff is still by far the best-evidenced 
intervention [9,10]. However, the resource-intensive 
nature of existing, face-to-face simulation methods 
is a limiting factor in arranging high frequency 
resuscitation training, due largely to the 
requirement for a high ratio of expert instructors to 
trainees. There is evidence to suggest that the 
optimal training frequency might be as often as six-
weekly [11], but, in ever-shorter-staffed healthcare 
systems, even the logistic challenge of ensuring 
practitioners have access to an Advanced Life 
Support (ALS) course just once every four years 
has necessitated a push by the European 
Resuscitation Council to streamline training and cut 
courses from two days to one [12,13]. It is to this 

Figure 1: High-fidelity, face-to-face clinical simulation 

Reproduced with permission. © University of Dundee 
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issue that we propose to explore a novel human 
computer interaction-based solution, in the form of 
an AI-supported digital simulation system that – by 
negating the need for an expert human presence – 
could facilitate the delivery of low-cost, high-impact 
training at unprecedented frequency. 

3. DIGITAL RESUSCITATION SIMULATION 

The rationale for digital simulation in clinical training 
is well established. In fact, for certain procedural 
skills, such as those required to perform 
laparoscopic surgery, it has proven more 
efficacious even than conventional training 
methods [14]. To explain why, then, we are 
proposing the need for an AI-based approach and 
billing this as novel research, it is necessary to first 
point out that existing simulators cater mostly for 
procedural skills rather than clinical decision-
making skills, and that the two applications require 
very different educational frameworks. 

At the simplest level, gated progression through a 
surgical simulation, where one particular method or 
technique is usually considered to be optimal at 
each step of the procedure, can be achieved using 
single-condition “if-then-else” statements: if [the 
trainee performs step A according to the optimal 
method] then [the trainee is deemed to have 
demonstrated proficiency and can progress to step 
B] else [they receive constructive feedback and 
retry step A]. This is both educationally viable (it 
allows for the integration of a proficiency-based 
progression model [15]) and computationally 
favourable: by thus restricting the permissible 
action space, the number of resultant states for 
which the simulation must account is very limited. 
Naturally, modern simulators have built upon this 
basic framework to develop less obviously linear 
narratives and to account for a number of common 
procedural complications, but by continuing to 
restrict permissible user actions they can continue 
to limit the state space to manageable dimensions.  

Our proposed resuscitation simulator cannot take 
advantage of the same approach. The focus when 
training for ALS moves from procedural to 
conceptual knowledge [16], because ALS providers 
are not required to become expert at tackling a 
fixed problem like their surgical colleagues but 
rather to develop cognitive processes that are 
generalizable to a wide range of disparate clinical 
scenarios, within which they must make prompt 
and effective decisions. Anyone who is familiar with 
model-free reinforcement learning will understand 
that development of generalizable behaviour 
policies first requires exploration of the action-state 
space [17], and the same is true for humans – 
though psychologists would more likely term this as 
the “active experimentation” phase of Kolb’s 
experiential learning cycle [18] and in lay terms it is 
simply known as trial-and-error learning. Thus, a 
simulator designed to develop generalizable 

behaviour is likely to maximise its efficacy by 
allowing users access to action-state spaces that 
reflect the true diversity of real world experience. 

With this in mind, it is our conclusion that stochastic 
simulation will offer the best training environment 
for resuscitation medicine, as it most accurately 
recreates the unpredictable nature of human 
physiology (or, at least, the unpredictability 
resulting from our incomplete understanding 
thereof) and allows for exposure to a much greater 
number of possible states than a deterministic 
framework; indeed, we adopted a stochastic 
approach for our prototype simulator [19]. However, 
the sheer volume of dynamic, interdependent 
variables involved in a high-fidelity resuscitation 
simulation makes it impractical to hard-code a 
generalizable ruleset by which to evaluate trainees’ 
actions for any given state (our prototype simulator 
used fuzzy logic for this, but as we increased 
complexity by adding new clinical features and 
scenarios, such an approach became nonviable), 
and having a large state space unfortunately 
compounds the problem by rendering the use of 
expert consensus regarding the optimal action for 
individual states – the approach favoured by many 
surgical simulations – similarly unworkable. 

So this leaves us with a problem that has 
historically limited the value of digital simulation 
training within many areas of medical practice: how 
does one devise a system for automatically 
evaluating clinical performance within a complex, 
stochastic simulation in order to provide real-time, 
corrective feedback (without which the simulator is 
of questionable educational value [20])? 

4. THE ROLE OF MACHINE LEARNING 

At first glance, supervised learning appears to 
represent a promising solution here: the data that 
informs clinical decision-making is readily 
expressed as a feature vector, and mapping this to 
the corresponding clinical actions can be reframed 
as a multinomial classification problem. So where 
we are struggling to capture the complexity of the 
relevant medical knowledge base in a 
generalizable ruleset using conventional computing 
strategies, a suitable classification algorithm could 

Figure 2: Digital simulation for laparoscopic surgery 

Reproduced with permission. © Marcus Rall 
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discern such a ruleset for us. 

The idea is an appealing one, but of course is 
rendered hopelessly unrealistic by the almost 
complete absence of comprehensive, large-scale 
datasets in this and many other clinical fields. 
Furthermore, in resuscitation medicine it is not 
merely the case that we have been failing to 
capture data in an appropriate, centralised digital 
format and that we can simply redress this moving 
forwards; recording and using data from patients 
who are often too unwell to give consent is a 
process fraught with ethical problems and 
confounded by the fact that, in the heat of a 
medical emergency, effective data capture is the 
last thing on anyone’s mind. Furthermore, the very 
rationale for this 
project is that 
resuscitation 
medicine is often 
performed sub-
optimally, thus one 
might question 
whether imitation 
learning is 
necessarily the best 
approach at all. 

There is, however, 
an alternative and 
potentially 
abundant source of 
clinical data within 
our particular problem: 
the simulator itself. 
Although the data derived from the simulator is 
synthesised rather than captured from real-world 
practice, it is closely informed by clinical expertise 
and there is a growing body of evidence to support 
the efficacy of data synthesis in addressing ML 
tasks for data-poor areas (particularly within the 
field of computer vision) [21,22,23]. Furthermore, 
we are not currently proposing to deploy our ML 
model in real-world practice, so one could argue 
that simulator-derived data is the most appropriate 
training material for our present purposes.  

The approach we propose takes its precedent 
largely from the seminal work by researchers at 
DeepMind in the field of deep reinforcement 
learning [24,25,26]. In the initial 2013 study, they 
employed a deep Q-learning strategy to attain 
human level performance in three of six complex 
reinforcement learning tasks involving Atari games. 
Their system, in short, consisted of a deep neural 
network tasked with predicting the action-value 
(“Q”) function for a given behaviour policy (usually 
referred to as “π”). The network was updated 
during the training process using stochastic 
gradient descent, and the update process 
smoothed out using an experience replay 
mechanism (to avoid, say, a promising behaviour 

strategy being too heavily penalised for a single 
bad outcome). In 2015, further refinements to this 
process allowed them to surpass human 
performance in a large number of similar tasks. 

This approach works well for environments like the 
game Space Invaders, where the action-state 
space is limited and there is minimal need for long-
term planning. The ML model can develop 
generalizable skills quickly and rapidly transition 
away from an “epsilon greedy” strategy, whereby it 
spends more time exploiting its new skillset and 
less time exploring its environment (or, as we 
described it earlier, engaging in trial-and-error 
learning). 

Our simulator, 
however, has a 
comparatively high-
dimensional action 
space, a more 
diverse state space, 
and a greater need 
for long-term 
planning, so a ML 
model functioning 
therein would need 
both a much longer 
period of 
exploration (or “a 
slower epsilon 
decay”) and less 
frequent policy 

updates to achieve a 
similar level of efficacy 

using Q-learning, which would result in 
exponentially increased computational cost. 
Furthermore, the stochastic nature of the simulator 
may confound attempts to learn an effective action-
value policy (because the same action taken in the 
same state could potentially result in two different 
“rewards”). 

Our aim, therefore, is to take a further lead from the 
DeepMind researchers: in 2016, they revisited 
some of the Atari problems, but this time using an 
“actor-critic” approach. Instead of trying to learn an 
optimal action-value function (from which the 
behaviour policy is then implied in a straight Q-
learning approach), the actor-critic method employs 
two asynchronous models: an “actor” whose task is 
to directly learn an optimal behaviour policy and a 
“critic” whose task is to learn an action-value policy 
upon which the actor bases its updates. This has a 
few key advantages over the Q-learning framework 
– namely, direct policy optimisation allows the 
model to more effectively deal with high-
dimensional action spaces and to learn stochastic 
policies, and the addition of a critic model as an 
action-value estimator offsets the increased 
variance and allows for more frequent policy 
updates than, say, a Monte Carlo approach to 

Figure 3: Our prototype digital resuscitation simulator, 
produced with the Unity games physics engine. The detailed, 

stochastically-generated clinical environment makes for a 
particularly high-fidelity experience but necessitates a novel 

approach to automated trainee evaluation. 
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policy optimisation [27]. For this reason, we believe 
the actor-critic framework represents the most 
promising solution to our particular problem. 

5. CONCLUSION AND FUTURE WORK 

Through the methods reviewed above, we propose 
to train an actor-critic model for the task of 
resuscitating virtual patients within our simulator. 
The intention would then be to employ the “critic” 
network from such a model as a means of 
evaluating the actions of our human trainees within 
any given state of the simulation, thus providing a 
basis upon which to provide constructive, real-time 
feedback within a complex, stochastic clinical 
simulation.  

If our proposed approach is successful, it may 
solve the problem of delivering high-frequency 
resuscitation simulation training within a resource-
constrained healthcare system, and plausibly 
improve patient outcomes as a result. However, it 
could also open up a new paradigm of digital 
medical education: imagine if final year medical 
students could hone their clinical skills on simulated 
wards – receiving constructive feedback as they 
assessed and treated virtual patients – before they 
ever made a management decision regarding a 
real-world patient. 

Furthermore, a successful outcome from our 
research would lay the ground for an exploration of 
whether this framework – i.e. clinical simulation as 
a training environment for reinforcement learning 
models – represents a potential means of creating 
clinical AI systems that can undertake sequential 
decision-making tasks directly affecting patient care 
even in data-poor areas of practice (perhaps using 
transfer learning strategies to further train the 
“actor” element of our actor-critic model with 
whatever real-world data is available). 
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