32 research outputs found
Heat shock protein A2 is a novel extracellular vesicle-associated protein
70-kDa Heat Shock Proteins (HSPA/HSP70) are chaperones playing a central role in the proteostasis control mechanisms. Their basal expression can be highly elevated as an adaptive response to environmental and pathophysiological stress conditions. HSPA2, one of poorly characterised chaperones of the HSPA/HSP70 family, has recently emerged as epithelial cells differentiation-related factor. It is also commonly expressed in cancer cells, where its functional significance remains unclear. Previously, we have found that proteotoxic stress provokes a decrease in HSPA2 levels in cancer cells. In the present study we found that proteasome inhibition-related loss of HSPA2 from cancer cells neither is related to a block in the gene transcription nor does it relate to increased autophagy-mediated disposals of the protein. Proteotoxic stress stimulated extracellular release of HSPA2 in extracellular vesicles (EVs). Interestingly, EVs containing HSPA2 are also released by non-stressed cancer and normal cells. In human urinary EVs levels of HSPA2 were correlated with the levels of TSG101, one of the main EVs markers. We conclude that HSPA2 may constitute basic components of EVs. Nevertheless, its specific role in EVs and cell-to-cell communication requires further investigation
Differential expression of HSPA1 and HSPA2 proteins in human tissues; tissue microarray-based immunohistochemical study
In the present study we determined the expression pattern of HSPA1 and HSPA2 proteins in various normal human tissues by tissue-microarray based immunohistochemical analysis. Both proteins belong to the HSPA (HSP70) family of heat shock proteins. The HSPA2 is encoded by the gene originally defined as testis-specific, while HSPA1 is encoded by the stress-inducible genes (HSPA1A and HSPA1B). Our study revealed that both proteins are expressed only in some tissues from the 24 ones examined. HSPA2 was detected in adrenal gland, bronchus, cerebellum, cerebrum, colon, esophagus, kidney, skin, small intestine, stomach and testis, but not in adipose tissue, bladder, breast, cardiac muscle, diaphragm, liver, lung, lymph node, pancreas, prostate, skeletal muscle, spleen, thyroid. Expression of HSPA1 was detected in adrenal gland, bladder, breast, bronchus, cardiac muscle, esophagus, kidney, prostate, skin, but not in other tissues examined. Moreover, HSPA2 and HSPA1 proteins were found to be expressed in a cell-type-specific manner. The most pronounced cell-type expression pattern was found for HSPA2 protein. In the case of stratified squamous epithelia of the skin and esophagus, as well as in ciliated pseudostratified columnar epithelium lining respiratory tract, the HSPA2 positive cells were located in the basal layer. In the colon, small intestine and bronchus epithelia HSPA2 was detected in goblet cells. In adrenal gland cortex HSPA2 expression was limited to cells of zona reticularis. The presented results clearly show that certain human tissues constitutively express varying levels of HSPA1 and HSPA2 proteins in a highly differentiated way. Thus, our study can help designing experimental models suitable for cell- and tissue-type-specific functional differences between HSPA2 and HSPA1 proteins in human tissues
HSP70-binding protein HSPBP1 regulates chaperone expression at a posttranslational level and is essential for spermatogenesis
Molecular chaperones play key roles during growth, development, and stress survival. The ability to induce chaperone expression enables cells to cope with the accumulation of nonnative proteins under stress and complete developmental processes with an increased requirement for chaperone assistance. Here we generate and analyze transgenic mice that lack the cochaperone HSPBP1, a nucleotide-exchange factor of HSP70 proteins and inhibitor of chaperone-assisted protein degradation. Male HSPBP1(−/−) mice are sterile because of impaired meiosis and massive apoptosis of spermatocytes. HSPBP1 deficiency in testes strongly reduces the expression of the inducible, antiapoptotic HSP70 family members HSPA1L and HSPA2, the latter of which is essential for synaptonemal complex disassembly during meiosis. We demonstrate that HSPBP1 affects chaperone expression at a posttranslational level by inhibiting the ubiquitylation and proteasomal degradation of inducible HSP70 proteins. We further provide evidence that the cochaperone BAG2 contributes to HSP70 stabilization in tissues other than testes. Our findings reveal that chaperone expression is determined not only by regulated transcription, but also by controlled degradation, with degradation-inhibiting cochaperones exerting essential prosurvival functions
Inhibition of the Heat Shock Protein A (HSPA) Family Potentiates the Anticancer Effects of Manumycin A
Manumycin A (MA) is a well-tolerated natural antibiotic showing pleiotropic anticancer effects in various preclinical in vitro and in vivo models. Anticancer drugs may themselves act as stressors to induce the cellular adaptive mechanism that can minimize their cytotoxicity. Heat shock proteins (HSPs) as cytoprotective factors can counteract the deleterious effects of various stressful stimuli. In this study, we examined whether the anticancer effects of MA can be counteracted by the mechanism related to HSPs belonging to the HSPA (HSP70) family. We found that MA caused cell type-specific alterations in the levels of HSPAs. These changes included concomitant upregulation of the stress-inducible (HSPA1 and HSPA6) and downregulation of the non-stress-inducible (HSPA2) paralogs. However, neither HSPA1 nor HSPA2 were necessary to provide protection against MA in lung cancer cells. Conversely, the simultaneous repression of several HSPA paralogs using pan-HSPA inhibitors (VER-155008 or JG-98) sensitized cancer cells to MA. We also observed that genetic ablation of the heat shock factor 1 (HSF1) transcription factor, a main transactivator of HSPAs expression, sensitized MCF7 cells to MA treatment. Our study reveals that inhibition of HSF1-mediated heat shock response (HSR) can improve the anticancer effect of MA. These observations suggest that targeting the HSR- or HSPA-mediated adaptive mechanisms may be a promising strategy for further preclinical developments