238 research outputs found

    Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery

    Get PDF
    Thermally regenerative ammonia-based batteries (TRABs) have been developed to harvest low-grade waste heat as electricity. To improve the power production and anodic coulombic efficiency, the use of ethylenediamine as an alternative ligand to ammonia was explored here. The power density of the ethylenediamine-based battery (TRENB) was 85 \ub1 3 W m2-electrode area with 2 M ethylenediamine, and 119 \ub14Wm2 with 3 M ethylenediamine. This power density was 68% higher than that of TRAB. The energy density was 478 Wh m3-anolyte, which was ~50% higher than that produced by TRAB. The anodic coulombic efficiency of the TRENB was 77 \ub1 2%, which was more than twice that obtained using ammonia in a TRAB (35%). The higher anodic efficiency reduced the difference between the anode dissolution and cathode deposition rates, resulting in a process more suitable for closed loop operation. The thermal-electric efficiency based on ethylenediamine separation using waste heat was estimated to be 0.52%, which was lower than that of TRAB (0.86%), mainly due to the more complex separation process. However, this energy recovery could likely be improved through optimization of the ethylenediamine separation process

    A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water

    Get PDF
    Updated water directives and ambitious targets like the United Nations’ Sustainable Development Goals (SDGs) have emerged in the last decade to tackle water scarcity and contamination. Although numerous strategies have been developed to remove water pollutants, it is still necessary to enhance their effectiveness against toxic and biorefractory organic molecules. Comprehensive reviews have highlighted the appealing features of the electrochemical technologies, but much progress has been made in recent years. In this timely review, a critical discussion on latest innovations and perspectives of the most promising electrochemical tools for wastewater treatment is presented. The work describes the performance of electrocatalytic anodes for direct electrochemical oxidation, the oxidation mediated by electrogenerated active chlorine, the electrocatalytic reduction as well as coupled approaches for synchronous anodic and cathodic processes combined with homogeneous and heterogeneous catalysis. The last section is devoted to the assessment of scale-up issues and the increase in the technology readiness level

    Polymer models of chromatin organization

    Get PDF
    This is an invited commentary on the research field concerning the modelling of chromosome organization in the cell nucleus of eukaryotes

    Tra Child Guarantee e “Patti educativi di comunità”. La rilevanza di approcci inclusivi basati su pratiche territoriali di contrasto alla povertà educativa minorile

    Get PDF
    contributo, che segue la recente Raccomandazione del Consiglio UE n. 1004 del 14/06/2021 per la Garanzia europea per l’Infanzia (European Child Guarantee), analizza alcuni aspetti della povertà educativa minorile. Si evidenzia come il contrasto alla povertà educativa minorile necessita del coinvolgimento di tutti i livelli di governance, di partnership pubblico/privato nonché di una particolare attenzione al territorio. In questa prospettiva i “Patti educativi di comunità” rappresentano un esempio di buona pratica caratterizzato da un approccio orientato alla co-progettazione e alla valorizzazione della dimensione territoriale. Child Guarantee e Patti educativi potrebbero diventare strumenti indispensabili per la fattibilità di politiche volte a contrastare il fenomeno della povertà educativa minorile

    The influence of sludge retention time on mixed culture microbial fuel cell start-ups

    Get PDF
    In this work, the start-ups of air-cathode microbial fuel cells (MFCs) seeds with conventional activated sludge cultivated at different solid retention times (SRTs) are compared. A clear influence of the SRT of the inoculum was observed, corresponding to an SRT of 10 days to the higher current density exerted, about 0.2 A m 122. This observation points out that, in this type of electrochemical device, it is recommended to use high SRT seeds. The work also points out that in order to promote an efficient start-up, it is not only necessary to use high SRT seeds, but also to feed a high COD concentration. When feeding 10,000 ppm COD and keeping SRT of 10 d differences of current densities up to 0.1 A m 122 were observed within a cycle. Additionally it was observed that SRT influences direct and indirect electron transfer mechanisms, being the direct mechanisms the most relevant ones, accounting for more than 95% of the total electricity production

    Mechanics and dynamics of X-chromosome pairing at X inactivation

    Get PDF
    At the onset of X-chromosome inactivation, the vital process whereby female mammalian cells equalize X products with respect to males, the X chromosomes are colocalized along their Xic (X-inactivation center) regions. The mechanism inducing recognition and pairing of the X’s remains, though, elusive. Starting from recent discoveries on the molecular factors and on the DNA sequences (the so-called "pairing sites") involved, we dissect the mechanical basis of Xic colocalization by using a statistical physics model. We show that soluble DNA-specific binding molecules, such as those experimentally identified, can be indeed sufficient to induce the spontaneous colocalization of the homologous chromosomes but only when their concentration, or chemical affinity, rises above a threshold value as a consequence of a thermodynamic phase transition. We derive the likelihood of pairing and its probability distribution. Chromosome dynamics has two stages: an initial independent Brownian diffusion followed, after a characteristic time scale, by recognition and pairing. Finally, we investigate the effects of DNA deletion/insertions in the region of pairing sites and compare model predictions to available experimental data

    Synthesizing and tuning chemical reaction networks with specified behaviours

    Full text link
    We consider how to generate chemical reaction networks (CRNs) from functional specifications. We propose a two-stage approach that combines synthesis by satisfiability modulo theories and Markov chain Monte Carlo based optimisation. First, we identify candidate CRNs that have the possibility to produce correct computations for a given finite set of inputs. We then optimise the reaction rates of each CRN using a combination of stochastic search techniques applied to the chemical master equation, simultaneously improving the of correct behaviour and ruling out spurious solutions. In addition, we use techniques from continuous time Markov chain theory to study the expected termination time for each CRN. We illustrate our approach by identifying CRNs for majority decision-making and division computation, which includes the identification of both known and unknown networks.Comment: 17 pages, 6 figures, appeared the proceedings of the 21st conference on DNA Computing and Molecular Programming, 201

    Arabidopsis plants perform arithmetic division to prevent starvation at night

    No full text
    Photosynthetic starch reserves that accumulate in Arabidopsis leaves during the day decrease approximately linearly with time at night to support metabolism and growth. We find that the rate of decrease is adjusted to accommodate variation in the time of onset of darkness and starch content, such that reserves last almost precisely until dawn. Generation of these dynamics therefore requires an arithmetic division computation between the starch content and expected time to dawn. We introduce two novel chemical kinetic models capable of implementing analog arithmetic division. Predictions from the models are successfully tested in plants perturbed by a night-time light period or by mutations in starch degradation pathways. Our experiments indicate which components of the starch degradation apparatus may be important for appropriate arithmetic division. Our results are potentially relevant for any biological system dependent on a food reserve for survival over a predictable time period

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Normalizing single-cell RNA sequencing data: challenges and opportunities

    Get PDF
    Single-cell transcriptomics is becoming an important component of the molecular biologist's toolkit. A critical step when analyzing data generated using this technology is normalization. However, normalization is typically performed using methods developed for bulk RNA sequencing or even microarray data, and the suitability of these methods for single-cell transcriptomics has not been assessed. We here discuss commonly used normalization approaches and illustrate how these can produce misleading results. Finally, we present alternative approaches and provide recommendations for single-cell RNA sequencing users
    • …
    corecore