18 research outputs found

    INFLUENCE OF DIFFERENT SURFACE MATERIALS ON THE FOULING PROCESS IN A MICROSTRUCTURED HEAT EXCHANGER UNDER LAMINAR REGIME

    Get PDF
    Microstructure devices are well known for their excellent performance with regard to heat and mass transfer. Microstructured heat exchangers show significant advantages in comparison with conventional heat exchangers. The unique properties of a microreaction system show high overall heat transfer coefficients for example. Small characteristic dimensions are in the order of a few hundred μm (Schubert et al., 1998, 2001; Worz et al, 1998). Due to the small dimensions, an increased pressure drop is combined with excellent heat transfer properties. But the small channels are prone to fouling processes. The accumulation of crystalline deposits is a severe problem. An additional wall layer causes a decrease of the overall heat transfer coefficient. Therefore the attention has been directed to the reduction of possible fouling processes within the channels. The fouling can be subdivided in two parts: First into the induction period and second into the so-called fouling period itself (Lund et al., 1981; Forster et al., 1999a, 1999b, and 2000). For the investigations a special electrically heated micro heat exchanger with changeable foils of different surface materials (stainless steel, FEP, DLC) was developed. The foil temperature is electronically controlled to a constant level of 100°C. A solution of calciumnitrate/sodiumhydrogencarbonate is pumped under laminar flow conditions through the channels of the microstructured part. The high temperature causes the precipitation of solid calciumcarbonate on the surface. The results for all materials, the uncoated stainless steel and the DLC and FEP coated heat transfer surfaces, show typical fouling behaviour with an induction period, followed by an asymptotic built-up of the deposited calcium carbonate. The fouling plot of DLC and FEP coated heat transfer surfaces contradict the hypothesis that the use of such materials leads to much longer induction periods. There is no influence of the surface material found on the induction period and the gradient of the fouling period in the laminar flow regime

    METALLIC MICRO HEAT EXCHANGERS: PROPERTIES, APPLICATIONS AND LONG TERM STABILITY

    Get PDF
    Micro heat exchangers, which until recently have been implemented only at laboratory scale, are now being available for industrial applications. They are well known for their superior heat transfer properties due to the large surface-to-volume ratio. But there are little data available on the long term stability of these devices. In this paper application several application examples for micro heat exchangers made of stainless steel are presented. The devices consist of stainless steel foils providing numerous micro channels generated by mechanical micromachining or wet chemical etching. A number of the foils are arranged in a specific way and bonded together. Device property descriptions as well as some possible application examples show the potential of metallic microstructure devices. Results on two crossflow microstructure heat exchangers running in long term tests are presented. Both devices have been tested for more than 8000 hours each, using deionised water as test fluid. Experimental data on the heat transfer properties and the pressure drop are given and compared. It was found that the heat transfer capabilities were significantly decreased within the first few hundred hours of testing and then run into a saturation state. Performance degradation may be due to a fouling layer deposited on the heat exchange surface. Some other experimental applications in which fouling was expected to cause problems are described briefly

    Teststand Cometos. T. 1 Messungen Palettenlage - Verformungsmessungen unter statischer Last

    No full text
    Available from TIB Hannover: ZA 5141(4855) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore