71 research outputs found

    Ubiquitination in the UV-induced DNA Damage Response: from proteomics to patient

    Get PDF
    __Abstract__ The integrity of DNA is continuously challenged by genotoxic agents from both internal and external origin that severely hamper vital DNA-dependent processes as genome duplication by replication and reading of the genetic code by transcription. The adverse effects of DNA damage are counteracted by a complex network of genome defence processes, referred to as the DNA damage response (DDR), which consists of different dedicated DNA repair systems and signalling pathways. Nucleotide excision repair (NER) is the main DNA repair process in mammalian cells that removes UV-induced DNA lesions. Protein ubiquitination has emerged as a key regulatory mechanism for this pathway. However, how the entire UV-light induced DDR (UV-DDR) is controlled via ubiquitination remains largely unknown. The aim of the research described in this thesis is to better understand the ubiquitin-mediated regulation of the UV-DDR. To identify new ubiquitin modifications and proteins not previously known to be involved within the UV-DDR on a proteome-wide scale mass spectrometry (MS) was used. To provide the necessary background Chapter 1 summarizes the current knowledge on DDR, ubiquitination and MS-based methods

    SUMOylation promotes protective responses to DNA-protein crosslinks

    Get PDF
    DNA-protein crosslinks (DPCs) are highly cytotoxic lesions that obstruct essential DNA transactions and whose resolution is critical for cell and organismal fitness. However, the mechanisms by which cells respond to and overcome DPCs remain incompletely understood. Recent studies unveiled a dedicated DPC repair pathway in higher eukaryotes involving the SprT-type metalloprotease SPRTN/DVC1, which proteolytically processes DPCs during DNA replication in a ubiquitin-regulated manner. Here, we show that chemically induced and defined enzymatic DPCs trigger potent chromatin SUMOylation responses targeting the crosslinked proteins and associated factors. Consequently, inhibiting SUMOylation compromises DPC clearance and cellular fitness. We demonstrate that ACRC/GCNA family SprT proteases interact with SUMO and establish important physiological roles of Caenorhabditis elegans GCNA-1 and SUMOylation in promoting germ cell and embryonic survival upon DPC formation. Our findings provide first global insights into signaling responses to DPCs and reveal an evolutionarily conserved function of SUMOylation in facilitating responses to these lesions in metazoans that may complement replication-coupled DPC resolution processes

    FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER

    Get PDF
    Transcription-coupled nucleotide excision repair (TC-NER) is a dedicated DNA repair pathway that removes transcription-blocking DNA lesions (TBLs). TC-NER is initiated by the recognition of lesion-stalled RNA Polymerase II by the joint action of the TC-NER factors Cockayne Syndrome protein A (CSA), Cockayne Syndrome protein B (CSB) and UV-Stimulated Scaffold Protein A (UVSSA). However, the exact recruitment mechanism of these factors toward TBLs remains elusive. Here, we study the recruitment mechanism of UVSSA using live-cell imaging and show that UVSSA accumulates at TBLs independent of CSA and CSB. Furthermore, using UVSSA deletion mutants, we could separate the CSA interaction function of UVSSA from its DNA damage recruitment activity, which is mediated by the UVSSA VHS and DUF2043 domains, respectively. Quantitative interaction proteomics showed that the Spt16 subunit of the histone chaperone FACT interacts with UVSSA, which is mediated by the DUF2043 domain. Spt16 is recruited to TBLs, independently of UVSSA, to stimulate UVSSA recruitment and TC-NER-mediated repair. Spt16 specifically affects UVSSA, as Spt16 depletion did not affect CSB recruitment, highlighting that different chromatin-modulating factors regulate different reaction steps of the highly orchestrated TC-NER pathway

    UVSSA and USP7, a new couple in transcription-coupled DNA repair

    Get PDF
    Transcription-coupled nucleotide excision repair (TC-NER) specifically removes transcription-blocking lesions from our genome. Defects in this pathway are associated with two human disorders: Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS). Despite a similar cellular defect in the UV DNA damage response, patients with these syndromes exhibit strikingly distinct symptoms; CS patients display severe developmental, neurological, and premature aging features, whereas the phenotype of UVSS patients is mostly restricted to UV hypersensitivity. The exact molecular mechanism behind these clinical differences is still unknown; however, they might be explained by additional functions of CS proteins beyond TC-NER. A short overview of the current hypotheses addressing possible molecular mechanisms and the proteins involved are presented in this review. In addition, we will focus on two new players involved in TC-NER which were recently identified: UV-stimulated scaffold protein A (UVSSA) and ubiquitin-specific protease 7 (USP7). UVSSA has been found to be the causative gene for UVSS and, together with USP7, is implicated in regulating TC-NER activity. We will discuss the function of UVSSA and USP7 and how the discovery of these proteins contributes to a better understanding of the molecular mechanisms underlying the clinical differences between UVSS and the more severe CS

    Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability

    Get PDF
    Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms

    A Fresh Variational-Analysis Look at the Positive Semidefinite Matrices World

    Get PDF
    International audienceEngineering sciences and applications of mathematics show unambiguously that positive semidefiniteness of matrices is the most important generalization of non-negative real num- bers. This notion of non-negativity for matrices has been well-studied in the literature; it has been the subject of review papers and entire chapters of books. This paper reviews some of the nice, useful properties of positive (semi)definite matrices, and insists in particular on (i) characterizations of positive (semi)definiteness and (ii) the geometrical properties of the set of positive semidefinite matrices. Some properties that turn out to be less well-known have here a special treatment. The use of these properties in optimization, as well as various references to applications, are spread all the way through. The "raison d'être" of this paper is essentially pedagogical; it adopts the viewpoint of variational analysis, shedding new light on the topic. Important, fruitful, and subtle, the positive semidefinite world is a good place to start with this domain of applied mathematics

    C9orf72 Expansion Disrupts ATM-mediated Chromosomal Break Repair

    Get PDF
    A hexanucleotide repeat expansion represents the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which the expansion cause neurodegeneration are poorly understood. We report elevated levels of DNA/RNA hybrids (R-loops) and double-strand breaks (DSBs) in rodent neurons, human cells, and in C9orf72-ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signalling and accumulation of protein-linked DNA breaks. We further reveal that defective ATM-mediated DNA repair is a consequence of p62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signalling. Adeno-associated virus- mediated expression of C9orf72-related RNA and dipeptide repeats in the murine central nervous system causes elevated DSBs, ATM defects, and triggers neurodegeneration. These findings identify R-Loops, DSBs, and defective ATM-mediated repair as pathological consequences of C9orf72 expansions, and suggest that C9orf72-linked neurodegeneration is driven, at least in part, by genomic instability

    Energetics and the Role of Defects in Fe(II)-Catalyzed Goethite Recrystallization from Molecular Simulations

    No full text
    Goethite is one of the most stable and common iron(III) minerals at the Earth's near surface. However, recent isotope tracer studies have suggested that goethite continuously recrystallizes in the presence of aqueous Fe(II) ions. Some of these studies indicate the presence of two regimes of atom-exchange kinetics, a rapid stage assigned to reactive defect sites initially available at particle surfaces, followed by slower continuous exchange. An autocatalytic solid-state electron conduction model coupling Fe(II) oxidative adsorption to its reductive release at spatially distinct sites has been proposed, but the thermodynamic driving force has yet to be pinpointed. Here, using a novel hybrid/reactive molecular simulation method, for goethite (110) surfaces at circumneutral pH, we rigorously tested whether surface free energy minimization, including examining the role of structural defects, is sufficient to overcome the activation energy for interfacial electron transfer and conduction. The simulations quantitatively show that (i) on smooth stable surfaces the available thermal energy at dynamic equilibrium is sufficient to sustain the slow continuous regime of atom-exchange kinetics via short intrasurface electron conduction pathways of 1-2 nm (three to five Fe site hops), (ii) in this slower regime, the model converges to atom-exchange kinetics of 10 -5 Fe s -1 cm -2 , a rate recently deduced from stochastic modeling of experimental data and linked to the reductive dissolution rate of goethite, and (iii) the driving force for smoothing of initially rough defective goethite surfaces can accelerate atom exchange to an extent quantitatively consistent with that observed in the initial rapid stage, in this case accessing conduction pathways of up to 8 nm. The findings suggest that the interaction of Fe(II) with initially defective goethite surfaces can drive, by the conduction model, atom exchange that is capable of recrystallizing the interiors of nanoscale particles and that, closer to equilibrium on smooth surfaces, slower atom exchange continues in perpetuity but likely involving only the outermost atomic layers
    • …
    corecore