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Survey Paper
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November 11, 2011

Abstract

Engineering sciences and applications of mathematics show unambiguously that positive
semidefiniteness of matrices is the most important generalization of non-negative real num-
bers. This notion of non-negativity for matrices has been well-studied in the literature; it
has been the subject of review papers and entire chapters of books.

This paper reviews some of the nice, useful properties of positive (semi)definite matrices,
and insists in particular on (i) characterizations of positive (semi)definiteness and (ii) the
geometrical properties of the set of positive semidefinite matrices. Some properties that turn
out to be less well-known have here a special treatment. The use of these properties in
optimization, as well as various references to applications, are spread all the way through.

The “raison d’être” of this paper is essentially pedagogical; it adopts the viewpoint of
variational analysis, shedding new light on the topic. Important, fruitful, and subtle, the
positive semidefinite world is a good place to start with this domain of applied mathematics.

Keywords: positive semidefiniteness, optimization, convex analysis, eigenvalues, spectral
functions, Riemannian geometry

AMS Classifications: 65K10, 90C22, 15A18

1 Positive (Semi)Definiteness: a Useful Notion

Positive (semi)definite matrices are fundamental objects in applied mathematics and engineering.
For example, they appear as covariance matrices in statistics, as Lyapunov functions in control,
as kernels in machine learning, as diffusion tensors in medical imaging, as lifting matrices in
combinatorics – just to name a few of the various uses of the concept.

Even if a first generalization of positive real numbers in matrix spaces would be the entry-
wise positive matrices (see [1, Chap. 8]), the numerous applications mentionned above show that
the most important generalisation is the positive semidefinite matrices. This notion of non-
negativity for matrices has been well-studied in the literature; it has been the topic of review
papers and entire chapters of books, for example [1, Chap. 7], [2, Chap. 6], [3, Chap. 8], [4,
Chap. 1] and [5, Sec. 6.5]. Besides, a fruitful branch of mathematical optimization is devoted to
problems involving positive semidefinite matrices; it is called semidefinite programming and has
proved to be a powerful tool to model and solve many problems in engineering or science [6],[7].

1Institut de mathématiques, Université Paul Sabatier, Toulouse, France jbhu@cict.fr
2CNRS, Lab. J. Kuntzmann, Grenoble, France, jerome.malick@inria.fr (corresponding author)
3Acknowledgement: The authors thank J.-B. Lasserre for having made us aware of the characterization of the

positive semidefiniteness by non-negativity of the principal invariants (see Section 3.2).
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In this article, we gather some results about positive (semi)definite matrices: some are well-
known, some are more original, all have interest. The special feature of this paper is that
we adopt the viewpoint of variational analysis, shedding new light on these topics. The term
“variational” is not to be understood in its old historical meaning (calculus of variations), but in
the broadest possible sense (optimization, convex analysis, nonsmooth analysis, complementary
problems,...). We insist in particular on the harmonious interplay between matrix analysis and
optimization.

The set of positive semidefinite matrices is a closed, convex cone in the space of symmetric
matrices, which enjoys a nice geometry, exploited in several applications. We review some
of these useful and sometimes subtle geometrical properties – again with a variational eye.
During this study, we will illustrate convex, semialgebraic and Riemannian geometries. As
a nice, concrete example of advanced mathematics, positive semidefiniteness also has some
pedagogical interest – on top of all its practical uses.

2 Positive (Semi)Definiteness: a Multi-Facet Notion

We start with a bunch of simple ideas. The goal of this first section is, while sticking to basic
properties, to show how different notions and various domains come into play when talking about
positive semidefinite matrices. We also recall the background properties, introduce notation, and
give a flavour of what comes next.

Let S n(R) be the linear space of symmetric real matrices of size n×n. A matrix A ∈ S n(R)
is said to be positive semidefinite (denoted A � 0), if

x⊤Ax ≥ 0 for all x ∈ Rn, (1)

where the superscript ·⊤ denotes the transposition of matrices. The matrix A is further called
positive definite (denoted by A ≻ 0) if the above inequality is strict for all nonzero x.

2.1 (Bi)Linear Algebra at Work.

Let us recall the key-result for symmetric matrices: the n eigenvalues λi of a matrix A ∈ S n(R)
lie in R, and there exists an orthogonal matrix U such that U⊤AU is the diagonal matrix with
the λi on the diagonal, denoted by diag(λ1, . . . , λn). This result can also be written as follows:
there exist n unit eigenvectors xi of A (the columns of U) such that we have the so-called spectral
decomposition

A =
n∑

i=1

λi xixi
⊤.

This result mixes nicely linear and bilinear algebra: U allows both the diagonalization of A
as U−1AU = diag(λ1, . . . , λn) (linear algebra world), and the reduction of the quadratic form
associated with A as U⊤AU = diag(λ1, . . . , λn), such that 〈A(Uy), Uy〉 = 〈diag(λ1, . . . , λn)y, y〉
(bilinear algebra world). There are several proofs of this result; one is optimization-based (see
e.g. [8, p.222]).

This decomposition is used to define the square root matrix: if A � 0, the square root of A,
denoted by A1/2, is the unique S � 0 such that S2 = A (given explicitly by the decomposition
U⊤SU = diag(

√
λ1, . . . ,

√
λn)). When A ≻ 0, we also have (A1/2)−1 = (A−1)1/2 so that the

notation A−1/2 (that we will often use) is not ambiguous.
We can also reduce two matrices at the same time: the so-called simultaneous reduction (see

e.g. [1, 4.6.12]) says that for a symmetric matrix A and a positive definite matrix B, there exists
an invertible matrix P such that

P⊤AP = diag(λ1, . . . , λn) and P⊤BP = diag(µ1, . . . , µn).

We are not aware of simple results of that kind for more than two matrices; the reason might
be deeper than one would think (see Problem 12 in [9]).
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2.2 Inner Products.

The space Rn is equipped with the canonical inner product

〈x, y〉 :=

n∑

i=1

xiyi = x⊤y.

We prefer to use the notation 〈·, ·〉, often more handy for calculation involving the transpose.
Up to a double sum, this inner product is the same for symmetric matrices: we equip S n(R)
with the canonical inner product

〈〈A,B〉〉 :=
n∑

i,j=1

AijBij = trace(A⊤B) = trace(AB).

A connection between these two scalar products is

〈Ax, x〉 = 〈〈A,xx⊤〉〉.

This easy property has an important role in combinatorial optimization: the so-called “lifting” is
the first step of the semidefinite relaxation of binary quadratic problems (see e.g. [10]). Another
interesting connection between the inner products is the Ky-Fan inequality: A,B ∈ S n(R)
satisfy the inequality

〈〈A,B〉〉 ≤ 〈λ(A), λ(B)〉,
where λ(A) := (λ1(A), . . . , λn(A)) ∈ Rn is the vector of the eigenvalues of A ordered nonin-
creasingly. Moreover equality holds in the above inequality if and only if A and B admit a
simultaneous eigendecomposition with ordered eigenvalues (see e.g. [11] and references therein).
This inequality is a key tool for the study of spectral functions and spectral sets [12]; we will
come back to spectral sets from time to time in next sections.

2.3 Quadratic Forms and Differential Calculus.

Naturally associated with A ∈ S n(R) is the quadratic form

q : x ∈ Rn 7−→ q(x) :=
1

2
〈Ax, x〉.

The definition of semidefiniteness (1) reads q(x) ≥ 0 for all x ∈ Rn. From an optimization point
of view, we have

inf
x∈Rn

q(x) > −∞ ⇐⇒ A � 0

and the set of minimizers is then ker A. The quadratic form q is obviously of class C∞ on Rn,
and we have for all x ∈ Rn

∇q(x) = Ax and ∇2q(x) = A. (2)

This is easy to remember: we formally have the same formulae for q(x) = ax2/2 with x ∈ R.
Note that the factor 1/2 in the definition of q aims at avoiding the factor 2 when differentiating q.

When A is positive definite, q defines a norm on Rn. This can be seen for example by the
simultaneous reduction: there exists P invertible such that P⊤AP = In, or in other words, up
to the change of variables y = P−1x, the quadratic form q is just the simpler form ‖ · ‖2:

‖y‖2 = 〈y, y〉 = 〈P⊤APy, y〉 = 〈APy, Py〉 = 〈Ax, x〉.
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2.4 When Convex Analysis Enters Into the Picture.

Recall that a function f : Rn → R is convex if

∀x, y ∈ Rn, α ∈ [0, 1], f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).

When f is smooth, convexity is characterized by the positive semidefiniteness of its Hessian
matrix ∇2f(x) for all x ∈ Rn (see e.g. [13, B.4.3.1]). From (2), we get that q is convex if and
only if A � 0. (Let us also mention that strict and strong convexities of q coincide and are
equivalent to A ≻ 0.)

During our visit to the world of the positive semidefinite matrices, we will meet several
notions from convex analysis (polar cone, Moreau decomposition, tangent and normal cones,...).
The first notion is the Legendre-Fenchel transformation, which is an important transformation in
convex analysis (see [13, Chap.E]) introducing a duality in convex optimization. The Legendre-
Fenchel transformation defined by

q∗ : s ∈ Rn 7−→ q∗(s) := sup
x∈Rn

{〈s, x〉 − q(x)} ,

has a simple explicit expression for q(x) = 〈Ax, x〉/2 (with A � 0). In the case A ≻ 0, we obtain

q∗(s) =
1

2
〈A−1s, s〉.

Incidentally, this expression allows us to establish B−1 ≺ A−1 if B ≻ A, with a quickly variational
proof (first use the fact that q ≤ p implies q∗ ≥ p∗, and then the fact that B − A ≻ 0). This
latter result is the matrix counterpart of the decreasing of the inverse for positive numbers. Note
moreover that the involution A 7→ A−1 of linear algebra corresponds to the involution q 7→ q∗

of convex analysis.
If we just have A � 0, then (see e.g. [13, E.1.1.4])

q∗(s) =

{
1
2〈x0, s〉 where Ax0 = s if s ∈ Im A
+∞ if s 6∈ Im A.

Note finally that making the transformation twice, we come back home: (q∗)∗ = q, as expected.

2.5 Do Not Forget Geometry.

A geometrical view is often used to introduce linear algebra (as in textbook [5]). The geometrical
object also associated with a matrix A ≻ 0 is the ellipsoidal convex compact set

EA := {x ∈ Rn : 〈Ax, x〉 ≤ 1}.

The eigenvalues of A give the shape of EA (see [5, Chap. 6]); it is the unit ball of the norm
given by A. The linear function A−1/2 maps the canonical unit ball B to EA; so the volume
of EA is 1/

√
det(A) times the volume of B (see Problem 3 in [9] for a question on the volume

of convex bodies). We mention that the inversion A 7→ A−1 coincides for EA with the polarity
transformation of convex compact bodies having 0 in the interior (see [13, Chap.C]).

2.6 Convex Cone, Visualisation.

The set of positive semidefinite matrices

S
n

+ (R) =
{

A ∈ S
n(R) : x⊤Ax ≥ 0 for all x ∈ Rn

}
(3)

enjoys a nice geometry. We give here a first flavour of its geometry when n = 2 and we will
come back to this topic again in Section 4.

4



It is not difficult to show by means of definition (3) that S n
+ (R) is a (closed) convex cone.

Recall that this means
(
α ∈ [0, 1], A,B ∈ S

n
+ (R)

)
=⇒ αA + (1− α)B ∈ S

n
+ (R),(

α ≥ 0, A ∈ S
n

+ (R)
)

=⇒ αA ∈ S
n

+ (R).

Since S 2(R) is of dimension 3, we can visualize the cone S 2
+ (R) as a subset of R3. We identify

S 2(R) and R3 by an isomorphism

ϕ : A =

[
a b
b c

]
∈ S

2(R) 7−→ ϕ(A) ∈ R3.

We can choose the isometry ϕ(A) = (a,
√

2b, c), but the best looking isomorphism is

ϕ(A) :=
1√
2
(2b, c− a, c + a)

that allows us to identify the cone S 2(R)
{[

a b
b c

]
: a ≥ 0, c ≥ 0, and ac− b2 ≥ 0

}
.

with ϕ(S 2(R)), which is {
(x, y, z) ∈ R3, z ≥

√
x2 + y2

}
.

Figure 1 shows that ϕ(S 2(R)) is the “usual” cone K of R3, also called Lorentz cone or second-
order cone in R3.

y

z

x

Figure 1: The usual cone in R3, identified with S 2
+ (R)

The boundary of K corresponds to the rank-one matrices, and the apex of K to the zero
matrix. To avoid giving an incorrect intuition, we emphasize that even if the boundary of S 2

+ (R)
deprived from 0 appears to be a smooth manifold, this is not true in general when n > 2 (S n

+ (R)
is in fact the union of smooth manifolds; see Section 4.4).

3 Characterizations of Positive (Semi)Definiteness

3.1 Characterizations of Positive Definiteness

The characterizations of positive definiteness are numerous; each of them has its own usefulness,
depending on the context. For example, the Gram formulation appears naturally in statistics,
the characterization by invariants in mechanics, or the exponential in dynamical systems. We
discuss some of these characterizations here: we start with a couple of characterizations that
use decompositions; then, we put emphasis on the characterizations by the positivity of n real
numbers; we finish with a more original characterization.
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3.1.1 Factorization-Like Characterizations

One of the most useful and most basic characterizations is the following factorization: A is
positive definite if and only if there exists B invertible such that A = BB⊤ (indeed in this case
〈Ax, x〉 = ‖Bx‖2 for all x ∈ Rn). There exist in fact different factorizations of this form, among
those: the Cholesky factorization with B upper-triangular with positive diagonal elements; and
the square root factorization, with B symmetric positive definite (see e.g. [2, Chap. 6]).

Other famous decomposition-like characterizations use exponential or Gram matrices: the
property A ≻ 0 is characterized by each of the two properties:

• Exponential form (see e.g. [14, Ex.5-28]): there exists B ∈ S n(R) such that A = exp(B).

• Gram form (see e.g. [1, 7.2.40]): there exists a n independant vectors {v1, . . . , vn} of Rn

(hence forming a basis of Rn) such that Aij = 〈vi, vj〉 for all i, j.

3.1.2 Positivity of n Real Numbers

Important characterizations of positive definiteness rely on the positivity of n real numbers
associated with symmetric matrices. For example, it is well-known that positive eigenvalues
characterize positive definiteness; we gather in next theorem three similar properties.

Theorem 3.1 (Positive definiteness by positivity of n real numbers). Each of the following
properties is equivalent to A ≻ 0:

(i) the eigenvalues λ1(A), . . . , λn(A) of A are positive;

(ii) the leading principal minors ∆1(A), . . . ,∆n(A) of A are positive;

(iii) the principal invariants i1(A), . . . , in(A) are positive.

We recall that the leading principal minors are defined as ∆k(A) := det Ak for k = 1, . . . , n,
where Ak is the submatrix of A made of the first k rows and first k columns of A. Recall also
that the principal invariants of A are (up to a change of sign) the coefficients of the monomials
of the characteristic polynomial PA(x) of A; more precisely

PA(x) = (−x)n + i1(A)(−x)n−1 + · · ·+ ik(A)(−x)n−k + · · ·+ in(A),

whence
ik(A) :=

∑

1≤n1<···<nk≤n

λn1
(A)λn2

(A) · · · λnk
(A) (4)

where the eigenvalues λi(A) are the roots of PA. For example

i1(A) = trace(A) = λ1(A) + · · ·+ λn(A) and in(A) = det(A) = λ1(A) · · · λn(A).

Another definition of ik(A) is

ik(A) := sum of the principal minors of order k of A.

A principal minor of order k is the determinant of the k × k matrix extracted from A by
considering the rows and columns n1, . . . , nk with 1 ≤ n1 < · · · < nk ≤ n.

Proof. (of Theorem 3.1). There are several ways to prove (ii): for instance, by purely linear
algebra techniques, by induction [1, p.404], or by quadratic optimization techniques [8, p.220],
[15, p.409]. The result also follows from the factorization of a matrix in a product of triangular
matrices; we sketch this proof (see more in [14]). Let A ∈ S n(R) such that ∆k(A) = det(Ak) 6= 0
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for all k = 1, . . . , n. Then there exists a (unique) lower triangular matrix with ones on the
diagonal, denoted by S, such that

A = SDS⊤ where D = diag
(
∆1(A),∆2(A)/∆1(A), . . . ,∆n(A)/∆n−1(A)

)
.

We call d1 := ∆1(A), dk := ∆k(A)/∆k−1(A) the so-called (principal) pivots of A. So we have

A ≻ 0 ⇐⇒ (dk > 0 for all k = 1, . . . , n) ⇐⇒ (∆k(A) > 0 for all k = 1, . . . , n).

Then it is easy to establish characterization (ii).
Let us prove here characterization (iii) which is less usual. One implication comes easily: if

A ≻ 0, then all the eigenvalues of A are positive; each ik(A) is then positive as well (recall (4)). To
establish the reverse implication, we assume that ik(A) > 0 for all k, so in particular det(A) > 0.
Suppose now that there exists a negative eigenvalue of A, call it λi0(A) < 0. Then observe that

0 < PA(λi0(A)) = (−λi0(A))n + · · ·+ ik(A)(−λi0(A))n−k + · · ·+ in(A)

which contradicts the fact that PA(λi0(A)) = 0. Thus we have λi(A) ≥ 0 for all i, and since
0 < det(A) = λ1(A) · · · λn(A), we get that λi(A) > 0 for all i, which guarantees that A is
positive definite.

Example 3.1 (Invariants in dimension 2 and 3). Let us illustrate in small dimension the third
point of the previous theorem. In the case n = 2, we have the simple formulation

PA(x) = x2 − trace(A)x + det A.

We note by the way that this is a particular case of the development

det(A + B) = detA + 〈〈cof A,B〉〉+ det B = detA + 〈〈A, cof B〉〉+ det B,

where cof M stands for the cofactors matrix of the matrix M (in general, this development is
obtained by differential calculus with the fact that the determinant is multilinear, see [16]). Let
us come back to our situation: the two principal invariants of A are trace A and det A, so we
have [

a b
b c

]
≻ 0 ⇐⇒

{
a > 0
ac− b2 > 0

⇐⇒
{

a + c > 0
ac− b2 > 0.

For the case n = 3, we have

PA(x) = −x3 + trace(A)x2 − trace(cof A)x− detA.

which is again a particular case of the nice formula

det(A + B) = detA + 〈〈cof A,B〉〉+ 〈〈A, cof B〉〉+ detB.

The three principal invariants are

i1(A) = traceA = λ1(A) + λ2(A) + λ3(A)

i2(A) =
(
(traceA)2 − trace(A2)

)
/2

= λ1(A)λ2(A) + λ2(A)λ3(A) + λ1(A)λ3(A) = trace(cof(A))

i3(A) =
(
(traceA)3 − 3trace(A)trace(A2) + 2trace(A3)

)
/6

= λ1(A)λ2(A)λ3(A) = detA.

Thus we have



a b d
b c e
d e f


 ≻ 0 ⇐⇒





a > 0
ac− b2 > 0
detA > 0

⇐⇒





a + c + f > 0
(cf − e2) + (af − d2) + (ac− b2) > 0
detA > 0

,

which gives a handy characterization in dimension 3. These principal invariants are widely used
for n = 3 in mechanics where they often have a physical interpretation (for example as stresses
and strains); see the textbook [17].
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3.1.3 Characterization by Polar Cones

Here is now a more original characterization, using convex cones in Rn. We start by recalling
some convex analysis that is needed; those notions (polar cones and Moreau polar decomposition)
have some interest of their own, and turn out to be less known than they deserve (see, for more
details, [13]).

If K is a closed, convex cone in a Euclidean space (E , 〈·, ·〉), then the polar cone K◦ of K
is the closed, convex cone of E made of all the points whose projection onto K is 0; in other
terms,

K◦ := {s ∈ E : 〈s, x〉 ≤ 0, for all x ∈ K}. (5)

Examples: for K = Rn
+, we have K◦ = Rn

−; for a linear subspace K = V , we have K◦ = V ⊥.
We see that polarity is to (closed) convex cones what orthogonality is to linear subspaces.
The fundamental result on this polarity is its reflexivity: doing the polar transformation twice
leads back home, i.e. (K◦)◦ = K. Another result that we will need later (and that is easy to
prove from the definition) is that for an invertible matrix B, we have

[B(K)]◦ = B−⊤(K◦). (6)

The most important result on polar cones is with no doubt the following Moreau decompo-
sition. Let x, x1 and x2 be three elements of E ; then the properties (i) and (ii) are equivalent:

(i) x = x1 + x2 with x1 ∈ K, x2 ∈ K◦ and 〈x1, x2〉 = 0;

(ii) x1 = ProjK(x) and x2 = ProjK◦(x).

Here ProjC stands for the projection onto the closed, convex set C. The decomposition of Rn

on K and K◦ generalizes the decomposition of Rn as the direct sum of a linear space L and its
orthogonal complement L⊥. Note that if we know how to project onto K, we get as a bonus the
projection onto K◦, which could be interesting in practical cases when K◦ is more complicated
than K (or the other way around).

Let us come back to matrices and prove the following original characterization of positive
definiteness.

Proposition 3.1. Let A ∈ S n(R) be invertible and K be a closed, convex cone of Rn; then

A ≻ 0 ⇐⇒
{
〈Ax, x〉 > 0 for all x ∈ Kr{0} and
〈A−1x, x〉 > 0 for all x ∈ K◦r{0}.

Note the nice symmetry of the result since (A−1)−1 = A and (K◦)◦ = K. This characteriza-
tion, whose proof is not straightforward, is due to [18]. We present here a proof, suggested by
X. Bonnefond, that uses the Moreau decomposition, as expected.

Proof. The fact that the condition be necessary follows directly from the definition of positive
definiteness; we focus on sufficiency. Let A be an invertible matrix satisfying the condition,
and consider an eigendecomposition A = UDU⊤ (where D = diag(λ1, . . . , λn) with nonzero λi).
Observe first that up to a change of cone (K ← U⊤K), we can assume that A be diagonal: the
condition can indeed be written, with the help of (6), as

{
〈Dx, x〉 > 0 for all x ∈ U⊤Kr{0}
〈D−1x, x〉 > 0 for all x ∈ U⊤K◦r{0}

(
= (U⊤K)

◦
r{0}

)
.

So we consider that A = D is diagonal, and we just have to prove that the condition




n∑

i=1

λix
2
i > 0 for all x ∈ Kr{0}

n∑

i=1

1

λi
x2

i > 0 for all x ∈ K◦r{0}
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yields that all the λi are strictly positive.
For the sake of contradiction, assume that only the k (with k < n) first eigenvalues λ1, . . . , λk

be positive, while the n− k last λk+1, . . . , λn be negative. We do one more step of simplification
of the expression by scaling the variables by S = diag(

√
|λ1|, . . . ,

√
|λn|): introducing K̃ := SK,

we observe that




k∑

i=1

y2
i >

n∑

i=k+1

y2
i for all y ∈ K̃r{0}

k∑

i=1

z2
i >

n∑

i=k+1

z2
i for all z ∈ S−1K◦r{0}

(
= K̃◦r{0}

)
.

(7)

After multiplying these two inequalities together, the Cauchy-Schwarz inequality yields

∀y ∈ K̃r{0}, z ∈ K̃◦r{0},
k∑

i=1

y2
i

k∑

i=1

z2
i >

(
n∑

i=k+1

ziyi

)2

. (8)

We apply this inequality to a well-chosen couple of vectors y and z to get a contradiction.
Consider the basis vector e = (0, . . . , 0, 1) and note that e does not lie in K̃ nor in K̃◦. So its
Moreau decomposition gives

e = y + z with y ∈ K̃r{0}, z ∈ K̃◦r{0} and 〈y, z〉 = 0.

Observe that we have zi = −yi for all i = 1, . . . , k so that

k∑

i=1

z2
i =

k∑

i=1

y2
i .

Now the orthogonality of y and z gives

n∑

i=k+1

ziyi = −
k∑

i=1

ziyi

(
=

k∑

i=1

yi
2

)
.

This contradicts (8), so proves that k = n, which establishes the characterization.

3.2 Characterizations of Positive Semidefiniteness

Most of the characterizations of positive definiteness have their positive semidefiniteness counter-
parts. In this section, we briefly highlight some similarities and differences between the positive
definite and semidefinitenesses.

The property A � 0 is equivalent to each of the following statements.

• There exists a matrix B such that A = BB⊤. This can also be read as: the quadratic form
qA(x) = ‖B⊤x‖2 is zero on ker B = ker A.

• The eigenvalues λ1, . . . , λn of A are non-negative. The set S n
+ (R) can thus be seen as the

inverse image of Rn
+

S
n

+ (R) = λ−1(Rn
+)

by the eigenvalue function λ : S n(R)→ Rn assigning to a symmetric A its eigenvalues in
a nonincreasing order. The convex set S n

+ (R) is then a convex spectral set in the sense of
[12]. Note that, more generally, we can prove that a spectral set λ−1(C) is convex if and
only if C is convex.

9



• For k = 1, . . . , n, all the principal minors of order k of A are non-negative. This means
that the determinants of all the submatrices made of k rows and k columns should be non-
negative – and not only the n leading principal minors ∆k(A) of Theorem 3.1. Having only
∆k(A) ≥ 0 does not guarantee semidefiniteness, as shown by the following counter-example
where A is not semidefinite positive (it is actually semidefinite negative)

A =

[
0 0
0 −1

]
, and detA1 = detA2 = 0.

In general, checking all the principal minors to draw a conclusion about the positive
semidefiniteness would mean checking 2n − 1 polynomial relations – and not only n as for
the positive definiteness, which is a surprising gap! In the next characterization though,
only n polynomial relations come into play.

• The principal invariants i1(A), . . . , in(A) are non-negative. This is a sort of aggregate form
of the previous condition, since for all k, the invariant ik(A) is the sum of

(n
k

)
principal

minors. Checking the positivity of those n polynomial relations does yield semidefinite
positiveness. The proof is conducted in the same way as for (iii) in Theorem 3.1 (see [1,
p.403]). Counting the number of principal minors involved in this characterization by the
ik(A), we naturally retrieve 2n − 1 since

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n − 1.

4 Geometry of the Set of Positive (Semi)Definite Matrices

The set S n
+ (R) of positive semidefinite matrices is a closed, convex cone of S n(R) that enjoys

nice, subtle geometrical properties. Some aspects are exposed in this section; we see the cone
S n

+ (R) as a concrete example to illustrate various notions of convex geometry and smooth ge-
ometry.

4.1 Closedness by Matrix Operations

Closedness by Additions. As a convex cone, S n
+ (R) is closed by addition and by multipli-

cation by α ≥ 0. We can add moreover the following property (easy to see by definitions)

(A � 0, B ≻ 0) =⇒ A + B ≻ 0.

The cone S n
+ (R) is also closed by another addition, the so-called parallel sum. When A ≻ 0

and B ≻ 0, the parallel addition is defined by

A//B := (A−1 + B−1)−1.

Since both the inversion and the sum preserve S n
++(R), the parallel addition preserves it as

well. This operation was introduced [19] by analogy with electrical networks: by the Kirchhoff
law, two wires of resistances r1 and r2 connected in parallel have a total resistance r such
that 1/r = 1/r1 + 1/r2. When A,B � 0, we could define A//B using pseudo-inversion (see
e.g. [4]). It turns out that this sum has also a natural variational-analysis definition (see e.g. [20,
Prob. 25]) as

〈(A//B)x, x〉 = inf
y+z=x

{〈Ay, y〉+ 〈Bz, z〉}.

We recognize this as the infimal convolution of the two quadratic forms qA and qB; this operation
is basic and important in convex analysis (see [13, Chap.B]).
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Closedness by Multiplications. The product of two positive semidefinite matrices is not
positive semidefinite in general: the matrix product destroys symmetry. There is no way to get
out of this since we have the following (rather surprising) result:

Any n× n-matrix A can be described as the product of two symmetric matrices.

This result is presented by [21] and [22] that give credit to G. Frobenius (1910). A quick way
to prove it is to use the fact that a matrix A and its transpose are similar: there exists an
invertible S ∈ S n(R) (non-unique, though) such that A⊤ = S−1AS [23]. As a consequence, we
can decompose A = S1S2 with S1 = SA⊤ (which is symmetric by choice of S) and S2 = S−1

which is symmetric.
Let us come back to (non)closedness by multiplication and give a positive result. Imposing

a posteriori symmetry solves indeed the problem: if A,B � 0 then the product AB is positive
semidefinite whenever it is symmetric – that is exactly when A and B commute. We add here
two (not well-known) results of the same kind:

• Result of E.Wigner [24]. If A1, A2, A3 ≻ 0 and the product A1A2A3 is symmetric, then it
is positive definite.

• Result of C.Ballantine [25]. Except when A = −λIn with λ > 0 and n even, any square
matrix with positive determinant can be written as the product of four positive definite
matrices. (For the case left aside, five positive definite matrices are needed.)

We also mention that, for another nonstandard matrix product, S n
+ (R) is closed without any

further assumption. If A = (aij) and B = (bij), we define the matrix product C = A ◦B = (cij)
by cij = aijbij for all i, j. Result: if A and B are positive definite (resp. semidefinite) then so is
the product A ◦B (see [1, 7.5.3]).

4.2 Convex Sets Attached with S n
+ (R)

4.2.1 Interior and Boundary

The (relative) interior of a convex set is always convex; here the interior of S n
+ (R) turns out to

be exactly S n
++(R). This is another appearance of the analogy with R+, since the interior of

(R+)n is (R++)n. The boundary of S n
+ (R) is exactly made up of the singular matrices A � 0.

There we find the positive semidefinite matrices of rank k, for 1 ≤ k ≤ n − 1, forming smooth
manifolds fitting together nicely (see Section 4.4).

4.2.2 The Facial Structure of S n
+ (R)

A convex subset of F ⊂ C is a face of C if every segment [a, b] ⊂ C such that there exists an
element of F in ]a, b[ is entirely contained in F . All the faces of S n

+ (R) are moreover exposed
faces: a face F of S n

+ (R) is the intersection of S n
+ (R) with a supporting hyperplane (that is a

hyperplane H such that S n
+ (R) is entirely contained in one of the closed halfspaces delimited

by H). More precisely, the result is the following (see [26] pointing to earlier references and
discussing about the generalization to spectral sets): F is a face of S n

+ (R) if and only if F is
the convex cone spanned by

{
vv⊤ : v ∈ V

}
where V is a subspace of Rn. The dimension of F is

then d(d + 1)/2 if d is the dimension of V . For example with n = 2: there is a face of dimension
0 (the apex of the cone S n

+ (R)), faces of dimension 1 (extremal rays of S
+
2 (R) directed by

vectors xx⊤ with nonzero x ∈ Rn), and a face of dimension 3 (the whole S
++
2 (R)).

There is another way to generate all the faces of S n
+ (R), as follows. Let L be a linear

subspace of Rn of dimension m, and set

FL :=
{
A ∈ S

n
+ (R) : L ⊂ ker A

}
;

then FL is a face of S n
+ (R) of dimension r(r + 1)/2 with r = n − m. When L ranges all the

subspaces of dimension m, FL visits all the faces of dimension r(r + 1)/2.
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Let us mention that the knowledge of the faces of S n
+ (R) is useful to for some optimisation

problems with semidefinite constraints. Indeed, the so-called “facial reduction technique” uses
the explicit form of the faces to reformulate degenerate semidefinite optimization problems into
problems in smaller dimension; see the initial article [27], and the recent [28] for an application
to sensor network problems.

4.2.3 Polar Cone and Projection

In the space S n(R) equipped with the inner product 〈〈·, ·〉〉, the polar cone (5) of K = S n
+ (R)

is simply K◦ = −S n
+ (R). It is also easy to determine the Moreau decomposition of a matrix

A ∈ S n(R) onto S n
+ (R) and its polar. Indeed consider an orthogonal eigendecomposition

U⊤AU = diag(λ1, . . . , λn); then the two matrices

A+ := Udiag
(
max{0, λ1}, . . . ,max{0, λn}

)
U⊤

A− := Udiag
(
min{0, λ1}, . . . ,min{0, λn}

)
U⊤

are such that A = A+ + A− and 〈A+, A−〉 = 0. Thus A+ (resp. A−) is the projection of A onto
S n

+ (R) (resp. onto its polar −S n
+ (R)). Said otherwise, to project A onto S n

+ (R), we just have to
compute an eigendecomposition of A and cut off negative eigenvalues by 0. It is remarkable that
we have an explicit expression of the projection onto S n

+ (R), and that this projection is easy
to compute (essentially by computing an eigendecomposition). More sophisticated projections
onto subsets of S n

+ (R) are also computable using standard tools of numerical optimization [29];
those projections have many applications in statistics and finance (see [30] for an early reference
of the projection onto S n

+ (R); see also [29, section 5]).
Finally note that we can interpret the projection of A onto S n

+ (R) = λ−1(Rn
+) with respect

to the projection of its eigenvalues onto Rn
+, namely

ProjS n

+
(R)(A) = Udiag

(
ProjR

n

+
(λ1, . . . , λn)

)
U⊤.

This result has a nice generalization: we can compute a projection onto a spectral set λ−1(C)
as soon as we know how to project onto the underlying C (see [31]).

4.2.4 Tangent and Normal Cones

Normal cones in convex geometry play the role of normal spaces in smooth geometry: they give
“orthogonal” directions to a set at a point of the set. Their “duals”, the tangent cones, then
give a simple conic approximation of a convex set around a point.

The normal cone to S n
+ (R) at X ∈ S n

+ (R) can be defined as the set of directions S ∈ S n(R)
such that the projection of X + S onto S n

+ (R) is X itself. In mathematical terms, this means

NA := {S ∈ S
n(R) : 〈〈S,B −A〉〉 ≤ 0 for all B ∈ S

n
+ (R)}.

The tangent cone is then defined as the polar of NA and admits the characterization:

TA := NA
◦ = R+(S n

+ (R)−A).

To fix ideas, we give a illustrative representation of the cone with its tangent and normal space
at a point (beware of the fact that this is not a real representation, since for n = 2 the boundary
of the cone is smooth).

For the special case A = 0, we have simply N0 = S n
+ (R)◦ = −S n

+ (R) and T0 = S n
+ (R). For

the general case A ∈ S n
+ (R), we have

TA = {M ∈ S
n(R) : 〈Mu,u〉 ≥ 0 for all u ∈ ker A} (9)

NA = {M � 0 : 〈〈M,A〉〉 = 0}
= {M � 0 : MA = 0} = {M � 0 : AM = 0}
= {M � 0 : Im M ⊂ ker A} = {M � 0 : Im A ⊂ ker M} .
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NA

A

TA

S n

+ (R)

Figure 2: (Nonrealistic) illustration of the normal and tangent cones to S n
+ (R) at A

The first expression of NA comes from the general result for closed, convex cones (see [13,
A.5.2.6]). The second one follows from the (quite surprising) property:

for A,B ∈ S
n

+ (R), we have: 〈〈A,B〉〉 = 0 ⇐⇒ AB = 0.

which has a one-line proof using a classical trick, as follows

〈〈A,B〉〉 = trace
(
A1/2A1/2B1/2B1/2

)
= trace

(
B1/2A1/2A1/2B1/2

)
= ‖A1/2B1/2‖2.

The third expression comes easily from the second. We can also describe NA one step further
from the last expression. Take A ∈ S n

+ (R) of rank r (< n). The dimension of ker A is n− r, let
{ur+1, . . . , un} be a basis of it. Then

M ∈ NA ⇐⇒ M =

n∑

i=r+1

αi uiui
⊤ with αi ≤ 0 (i = r + 1, . . . , n).

4.2.5 Spectahedron, the Spectral Simplex

A special subset of S n
+ (R) plays an important role in the variational analysis of the eigenvalues

(see [32], [33]) and in some applications of semidefinite programming (as for example for sparse
principal component analysis [34]). The so-called spectahedron is defined by

Ω1 := {A � 0 : trace(A) = 1}. (10)

This set is convex and compact; its extreme points are exactly the matrices xx⊤ with unit-vectors
x ∈ Rn. The spectahedron equivalently defined through the eigenvalues: Ω1 = λ−1(Π1) is the
spectral set of Π1 := {(λ1, · · · , λn) : λi ≥ 0,

∑n
i=1 λi = 1} the unit-simplex of Rn.

This set and its properties generalize as follows. For an integer m ∈ {1, . . . , n}, set

Ωm := {A � 0 : trace(A) = m and λmax(A) ≤ 1}.

For example, Ωn is obviously reduced to a single element, the identity matrix In. Note that
we did not add λmax(A) ≤ 1 in the definition of Ω1, since it was automatically satisfied. The
general result is the following: the set Ωm is convex and compact, and it is the convex hull
of the matrices XX⊤, where X is n × m-matrix such that X⊤X = Im. In other words: the
convex hull of the orthogonal projection matrices of rank m is exactly the set of symmetric
matrices whose eigenvalues are between 0 and 1, and whose trace is m. The proof of this result

13



trace(·) = 1Ω1

S n

+ (R)

In

Figure 3: (Nonrealistic) representation of the spectahedron

starts with showing that Ωm is a spectral Ωm = λ−1(Πm) with the compact convex polyhedron
Πm := {(λ1, · · · , λn) : 0 ≤ λi ≤ 1,

∑n
i=1 λi = m}. Then we can determine the extremal points

of Πm: the point (λ̄1, . . . , λ̄n) is extremal in Πm if and only if all the λ̄i are zeros, expected m
of them that are ones.

4.3 Representation as Inequality Constrained Set: Nonsmooth Viewpoint

A common, pleasant situation in optimization is when a constraint set C is represented with the
help of inequalities

g1(x) ≤ 0, . . . , gp(x) ≤ 0,

and the interior of C with the help of strict inequalities with the same functions

g1(x) < 0, . . . , gp(x) < 0.

Does there exist such a representation for C = S n
+ (R) and its interior S n

++(R) ? The answer
is yes. We highlight two types of representing functions: a nonsmooth one in this section, and
polynomial ones in next section.

Consider the function g : S n(R)→ R defined by

g(A) := λmax(−A) = −λmin(A). (11)

This function is convex and positively homogeneous, as a maximum of linear functions. Indeed,
we have the well-known Rayleigh quotient

λmax(A) = max
‖x‖=1

〈Ax, x〉 = max
‖x‖=1

〈〈A,xx⊤〉〉
(

= max
X∈Ω1

〈〈A,X〉〉
)
,

where Ω1 is defined by (10). More precisely, the last expression says that λmax is the sup-
port function of Ω1 (the notion of support function is fundamental in convex analysis; see [13,
Chap.C]). Let us come back to the representation of S n

+ (R) as an inequality constrained set:
we have a first adequate representation as

S
n

+ (R) = {A ∈ S
n(R) : g(A) ≤ 0},

S
n

++(R) = {A ∈ S
n(R) : g(A) < 0}.

We can thus represent S n
+ (R) as a constrained set with a single inequality, but we have to

use the nonsmooth function λmax. On the other hand, in Section 4.4, we will represent it with
several smooth functions.

We mention briefly that smooth approximations of the nonsmooth representing function λmax

give smooth approximations of S n
+ (R). We start from S n

+ (R) = {A ∈ S n(R) : λmax(−A) ≤ 0}
and, following [35], we define for all µ > 0

X ∈ S
n(R) 7−→ fµ(X) := µ log

(
n∑

i=1

exp(λi(X)/µ)

)
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where the λi(X) are the eigenvalues of X. This expression of fµ can be transformed to

fµ(X) = λmax(X) + µ log (trace(E(X))) with E(X) = exp

(
X − λmax(X)In

µ

)
.

In [35], it is shown that fµ is globally Lipschitz, of class C1 with gradient

∇fµ(X) =
E(X)

trace(E(X))
,

and that we have the uniform approximation

λmax(X) ≤ fµ(X) ≤ λmax(X) + µ log n.

Therefore, S n
+ (R) could be uniformly approximated by {A ∈ S n(R) : fµ(−A) ≤ 0} which is an

inner (µ log n)-approximation.

4.4 Representation as Inequality Constrained Sets: Semialgebraic Viewpoint

The adequate representation of the previous section used a nonsmooth function. The algebraic
nature of S n

+ (R) gives a representation with polynomials, and it is tempting to consider the
positively homogenous polynomial functions ∆k(A). However we cannot use them to have the
desired decomposition since (recall Section 3.2)

S
n

+ (R) ( {A ∈ S
n(R) : ∆k(A) ≥ 0 for all k = 1, . . . , n},

S
n

++(R) = {A ∈ S
n(R) : ∆k(A) > 0 for all k = 1, . . . , n}.

We still have an adequate polynomial representation: setting gk = −ik, we have indeed

S
n

+ (R) = {A ∈ S
n(R) : gk(A) ≤ 0 for all k = 1, . . . , n}, (12)

S
n

++(R) = {A ∈ S
n(R) : gk(A) < 0 for all k = 1, . . . , n}.

The constraint functions gk are polynomial, positively homogeneous of degree k; obviously they
are of class C∞, whereas g in (11) is nonsmooth. Note that that S n

+ (R) represented by (12)
is clearly a cone, but its convexity is less clear (and comes from subtle reasons: hyperbolic
polynomials and the convexity theorem of G̊arding; see [12]).

Also note that in the representation (12) we have the a priori knowledge of the active con-
straints at a matrix A (those such that gk(A) = 0). Usually, we only know this a posteriori;
here we directly know from the rank r of A that:

gk(A) < 0 for k = 1, . . . , r and gk(A) = 0 for k = r + 1, . . . , n.

We now briefly discuss the fact that S n
+ (R), as it appears in (12), is a semialgebraic set.

A so-called semialgebraic set is a set defined by unions and intersections of a finite number of
polynomial inequalities. It turns out that these sets enjoy very nice closedness properties (almost
any “finite”’ operation preserves semialgebraicity; see [36]). These properties are useful tools for
the analysis of structured nonsmooth optimization problems (see e.g. [37], [38]). One of the main
properties of semialgebraic sets is that they can be decomposed as a union of connected smooth
manifolds (so-called strata) that fit together nicely. Denoting by Rr the smooth submanifold
made up from the positive semidefinite matrices of fixed rank r (for r = 0, . . . , n), we observe
that the semialgebraic cone S n

+ (R) is the union of the n+1 manifolds Rr, which are themselves
the union of their connected components, the strata of S n

+ (R). The two extreme cases are:
r = 0 the apex of the cone and r = n the interior of the cone. The decomposition as union
of manifolds is explicit in the representation of S2(R) in R3: the point (r = 0), the boundary
deprived from the origin (r = 1) and the interior of the cone (r = 2).

The tangent space to Rr at A (denoted by TA) is connected to the tangent cone to S n
+ (R)

at A. In fact, TA is the largest subspace included in TA (recall(9)), namely

TA = TA ∩−TA = {M ∈ S
n(R) : Mu = 0 for all u ∈ ker A} .
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4.5 Natural Riemannian Metric on S n
++(R)

In practice, the computations dealing with positive definite matrices are numerous and involve
various operations: averaging, approximation, filtering, estimation, etc. It has been noticed that
the Euclidean geometry is not always best suited for some of these operations (as for example in
image processing; see e.g. [39] and references therein). This section presents another geometry
in S n

++(R) having different operations (for example for averaging). Next section connects this
geometry to optimization. We refer to [4, Chap. 6] for more details and for the proofs of the
results. Note that similar developments hold for Rr the fixed rank positive definite matrix
manifold (see [40]), but they require more involved techniques. Though we use the language of
Riemannian geometry, we stay here at a very basic level.

The cone S n
++(R) is open, and has two natural geometries: the Euclidean geometry associ-

ated with the inner product 〈〈·, ·〉〉, where the distance between A and B is

d2(A,B) := ‖A−B‖2 =
√
〈〈A−B,A−B〉〉;

and a Riemannian metric defined from ds = ‖A−1/2(dA)A−1/2‖2 (the “infinitesimal length” at
A) by the following standard way.

Let A,B ∈ S n
++(R) and a piecewise C1 path γ : [a, b]→ S n

++(R) from A = γ(a) to B = γ(b);
then the length of γ is

L(γ) :=

∫ b

a
‖γ−1/2(t)γ′(t)γ−1/2(t)‖2dt,

and the Riemannian distance is

dR(A,B) := inf {L(γ) : γ paths from A to B} . (13)

It turns out that we have nice explicit expressions of dR and associated “geodesics” (locally,
the shortest paths between two points). The unique geodesic that connects A and B is the
following path

[0, 1] 7−→ γ̄(t) := A1/2(A−1/2BA−1/2)
t
A1/2

that reaches the minimum in (13), so that

dR(A,B)2 = ‖ log(A−1/2BA−1/2)‖2

=

n∑

i=1

(
log λi(A

−1/2BA−1/2)
)2

=

n∑

i=1

(
log λi(A

−1B)
)2

.

The last inequality comes from the fact that A−1B and A1/2BA1/2 are similar matrices, so they
have the same eigenvalues. We can verify from this expression that we have indeed the desirable
property dR(A,B) = dR(B,A) (since (A−1B)−1 = B−1A, the squared log of eigenvalues are the
same). We give a flavour on why this distance has a better behaviour for some applications.

Distance of inverses. We get easily that the inversion does not change the distance: for any
A and B in S n

++(R), we have
dR(A,B) = dR(A−1, B−1). (14)

This property does not hold for the distance d2. Here it simply follows from the fact that

(A−1B)
⊤

= BA−1 have the same eigenvalues.

Geometric average (and a little more). Let A1, . . . , Am be m matrices of S n
++(R). Writing

the optimality conditions, we can prove that there exists a unique matrix M2(A1, . . . , Am) in
S n

++(R) that minimizes X 7→ ∑m
i=1(‖X − Ai‖2)2, and we get explictly that M2 is the usual

(arithmetic) average

M2(A1, . . . , Am) :=
A1 + · · · + Am

m
.
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For the Riemannian geometry, we have similarly that there exists a unique matrix X in S n
++(R)

that minimizes

X 7−→
m∑

i=1

dR(X,Ai)
2, (15)

and this matrix, denoted by MR(A1, . . . , Am), is called the Riemannian average. An interesting
property (not shared by M2) comes from (14): we have

MR(A−1
1 , . . . , A−1

m ) is the inverse of MR(A1, . . . , Am). (16)

Finally, the optimality condition of (15) yields that
∑m

i=1 log(Ai
−1X) = 0 characterizes the

Riemannian average.
For m = 2, we see that MR(A1, A2) = A1(A1

−1A2)
1/2 = A2(A2

−1A1)
1/2 is the solution of

the equation (see [4, Chap. 4] for the details). If furthermore A1 and A2 commute, we have

MR(A1, A2) = A
1/2
1 A

1/2
2 .

This last property explains why the Riemmanian average is sometimes called the geometric
average.

For a general m, computing MR(A1, . . . , Am) might be less direct. As far as the symmetry
property (16) is concerned, one could consider instead another matrix average, the so-called
the resolvent average Mres(A1, . . . , Am) of [41]. It can be defined as the minimum of a function
looking like (15) (with a Bregman distance replacing dR; see [41, Prop. 2.8]), but it has also a
simple, easy-to-compute expression that can be written

(Mres(A1, . . . , Am) + In)−1 = ((A1 + In)−1 + · · ·+ (A1 + In)−1)/n.

The above equality interprets that the resolvent of the average is the arithmetic average of the
resolvents of the Ai’s, which give the name “resolvent average”. The fact that the resolvent
average satisfies (16) comes from techniques of variational analysis (see [41, Th. 4.8]).

4.6 Barrier Function of S n
++(R)

As a function of the real variable x > 0, the logarithm x 7→ log x has a matrix relative which
turns out to have a central role in optimization. The celebrated (negative) log-function for
matrices is

X ≻ 0 7−→ F (X) := − log(det(X)) = log(det X−1). (17)

Differential calculus for F in S n
++(R) gives the “same” results as for the log in R+. The composite

function F is of class C∞ on S n
++(R); its derivative DF (X) : H ∈ S n(R) 7→ DF (X)[H] is such

that
DF (X)[H] = −trace(X−1H) = 〈〈−X−1,H〉〉 = −trace(X−1/2HX−1/2),

and gives the gradient ∇F (X) = −X−1. We have furthermore

D2F (X)[H,H] = trace
(
(X−1/2HX−1/2)2

)
= 〈〈X−1HX−1,H〉〉

D3F (X)[H,H,H] = −2trace
(
(X−1/2HX1/2)3

)
.

We can also prove that F is strictly convex on S n
++(R). This fundamental property is the topic

of several exercises in [42].
As mentioned above, this function has a very special role in optimization, more precisely in

semidefinite programming [6]. The function F is indeed a self-concordant barrier-function for
S n

++(R). The role of barrier is intuitive: F (X)→ +∞ when X ≻ 0 approaches the boundary of
S n

++(R), which consists of the singular matrices A � 0. Self-concordance is a technical property,
namely ∣∣D3F (X)[H,H,H]

∣∣ ≤ α
(
D2F (X)[H,H]

)3/2
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for a constant α (here α = 2 is valid). In the nineties, Y. Nesterov and A. Nemirovski developed
a theory [43], that has had tremedous consequences in convex optimization. They showed
that self-concordant barrier-functions allow to design algorithms (called interior-point methods)
for linear optimization problems with conic constraints, and that moreover the complexity of
those algorithms is fully understood. In particular, the interior-point algorithms for semidefinite
programming made a little revolution during the nineties: they provided numerical methods
to solve a wide range of engineering problems, for example in control [44], or in combinatorial
optimization [45].

The log-function F in (17) is at the heart of interior point methods for semidefinite program-
ming; it also has a remarkable connection with the Riemmanian metric of Section 4.5. Observe
indeed that the norm in S n

+ (R) associated to D2F (X) corresponds nicely with the infinitesimal
norm defined by the Riemannian structure,

‖H‖D2F (X) = (D2F (X)[H,H])1/2 = ‖X−1/2HX−1/2‖.

It follows that the Riemannian distance naturally associated with the barrier is exactly the natu-
ral Riemannian distance (13). This geometrical interpretation of the barrier function then shows
that interior-point methods have an intrinsic appeal, and may explain their strong complexity
results (see more in [46]).

4.7 Unit Partition in S n
++(R)

In this last section, we discuss the so-called unit partition problem in S n
++(R). Motivated by

a problem originated from Economy, I. Ekeland posed it as a challenge in a conference in 1997
[47]. Given k+1 nonzeros vectors x1, . . . , xk, y in Rn, when is it possible to find positive definite
matrices M1, . . . ,Mk such that

Mi y = xi for all i = 1, . . . , k (18)

and

k∑

i=1

Mi = In ? (19)

The first equation is of the quasi-Newton type [48]; the second equation gives the name of the
problem.

A condition that guarantees existence of such matrices should obviously depend on the
vectors x1, . . . , xk, y. It is easy to get from (18), (19) that a necessary condition is

〈xi, y〉 > 0 for all i = 1, . . . , k and

k∑

i=1

xi = y. (20)

Unfortunately, this condition is not sufficient, as shown by the following counter-example. Con-
sider in R2, the three vectors

x1 =

[
1/2
1

]
, x2 =

[
1/2
−1

]
and y =

[
1
0

]
.

Then observe that for both i = 1, 2, the property Mix
i = y with Mi ≻ 0 yields

M1 =

[
1/2 1
1 α

]
and M2 =

[
1/2 −1
−1 β

]
,

with α, β > 2. Thus it is impossible to have M1 + M2 = I2. Note also that condition (20) is
even not sufficient to get a weaker version of the partition (19) with Mi � 0.

We give here a constructive way to get the unit partition of S n
+ (R) (and later a variant of

the result). The result is due to A. Inchakov, as noted by [49].
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Theorem 4.1 (Condition for unit partition of S n
++(R)). Let k+1 nonzeros vectors x1, . . . , xk, y

in Rn, satisfying (20). Then a necessary and sufficient condition for the existence of Mi ≻ 0
satisfying (18) and (19) is that

A0 := In −
k∑

i=1

xixi
⊤

〈xi, y〉 be positive definite on y⊥. (21)

Proof. Let us prove first that the condition (21) is necessary. The Cauchy-Schwarz inequality
gives for all i and for all z ∈ Rn

〈Miy, z〉2 ≤ 〈Miy, y〉〈Miz, z〉 with equality if and only if z and y are collinear,

which yields

〈xi, z〉2 ≤ 〈xi, y〉〈Miz, z〉 with equality if and only if z and y collinear.

As a consequence, we have





k∑

i=1

(
〈xi, z〉2

〈xi, y〉 − 〈Miz, z〉
)

=

k∑

i=1

〈xi, z〉2

〈xi, y〉 − ‖z‖
2 ≤ 0

with equality if and only if z and y are collinear

which means

qA0
(z) ≥ 0 with equality if and only if z and y are collinear.

Thus A0 is positive semidefinite and of kernel reduced to Ry, and we get (21).
To prove sufficiency of condition (21), we propose the matrices

Mi :=
A0

k
+

xixi⊤

〈xi, y〉 .

By construction, we have
∑k

i=1 Mi = In; and moreover, since A0y = 0, we also have Miy = xi

for all i = 1, . . . , k. There remains to prove the positive definiteness of the Mi’s.
It is clear that Mi � 0, since it is sum of two positive semidefinite matrices. Let us take

z ∈ Rn such that 〈Miz, z〉 = 0, and let us prove that z = 0. We have

〈A0z, z〉
k

+
〈xi, z〉2

〈xi, y〉 = 0,

which yields {
〈A0z, z〉 = 0 (hence z and y are collinear by (21))
〈xi, z〉 = 0.

The conclusion follows easily: there exists α ∈ R such that z = αy, and the condition 〈xi, y〉 > 0
implies α = 0 and then z = 0, so Mi is definite positive.

It is interesting to note that (21) is of the type

(E0) 〈Ax, x〉 > 0 for all x 6= 0 orthogonal to y,

for A ∈ S n(R) and y 6= 0 in Rn, which is a frequently encountered property in matrix analysis
and optimization. Here is below four formulations equivalent to (E0) (see e.g. [50]).

(E1) Finsler-Debreu condition: there exists µ ≥ 0 such that A + µyy⊤ ≻ 0.
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(E2) Condition on the augmented matrix: the matrix Ā ∈ Sn+1(R) defined by blocks as

Ā =

[
A y
y⊤ 0

]

has exactly n positive eigenvalues.

(E3) Condition on determinants (that the economists are keen of). For I ⊂ {1, . . . , n}, we note
AI the matrix extracted from A in taking only columns and rows of indices in I. Similarly
yI is obtained from y by taking the entries yi for i ∈ I. We set

ĀI =

[
AI yI

yI
⊤ 0

]

and the condition is det AI < 0 for all I = {1, 2}, {1, 2, 3}, . . . , {1, . . . , n}.

(E4) Condition on the inverse of the augmented matrix. The matrix Ā is invertible and the n×n-
matrix extracted from Ā−1 by taking the first n columns and rows is positive semidefinite.

We finish with a variant of Theorem 4.1 showing that starting from a weaker assumption,
we get a weaker result.

Theorem 4.2 (Condition for unit partition of S n
+ (R)). Let x1, . . . , xk and y 6= 0 be k+1 vectors

of Rn, satisfying 



(
〈xi, y〉 > 0 or xi = 0

)
for all i = 1, . . . , k

k∑

i=1

xi = y.
(22)

Then a necessary and sufficient condition for the existence of Mi � 0 satisfying (18) and (19)
is that

A0 := In −
∑

{i:xi 6=0}

xixi
⊤

〈xi, y〉 is positive semidefinite. (23)

Proof. Note that under the assumption of the theorem, we have 〈xi, y〉 ≥ 0 for all i = 1, . . . , k
and there is xi 6= 0 because

∑k
i=1 xi = y 6= 0. The proof is similar to (and easier than) the

previous one. Let us start with the necessity of the condition (23). We have A0y = 0 since∑n
i=1 xi =

∑
{i: xi 6=0} xi = y. With the Cauchy-Schwarz inequality, we write

〈xi, z〉2 ≤ 〈xi, y〉〈Miz, z〉,

and then
∑

{i: xi 6=0}

〈xi, z〉2

〈xi, y〉 − ‖z‖
2 ≤ 0.

Thus we get A0 � 0. As for sufficiency, we propose the semidefinite matrices

Mi :=





A0

k
if xi = 0

A0

k
+

xixi⊤

〈xi, y〉 if 〈xi, y〉 > 0.

We check that in both cases Miy = xi, and obviously we also have
∑k

i=1 Mi = In.
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5 Concluding Remarks

This article highlights nice variational properties of (the set of the) positive semidefinite matrices,
and gives pointers to some of their applications. Even if the notion of positive semidefiniteness is
basic and taught everywhere, there are still many open questions related to it, and more generally
to the interplay between matrix analysis and optimization; see the commented problems in [9]
and [51]. The “variational” viewpoint adopted here also opens the way to another notion of
positivity, the so-called “copositivity”, which also has rich and useful properties: see the recent
review [52] for example.
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