46 research outputs found

    Functional Analysis of a Putative Dothistromin Toxin MFS Transporter Gene

    Get PDF
    Dothistromin is a non-host selective toxin produced by the pine needle pathogen Dothistroma septosporum. Dothistromin is not required for pathogenicity, but may have a role in competition and niche protection. To determine how D. septosporum tolerates its own toxin, a putative dothistromin transporter, DotC, was investigated. Studies with mutants lacking a functional dotC gene, overproducing DotC, or with a DotC-GFP fusion gene, did not provide conclusive evidence of a role in dothistromin efflux. The mutants revealed a major effect of DotC on dothistromin biosynthesis but were resistant to exogenous dothistromin. Intracellular localization studies suggest that compartmentalization may be important for dothistromin tolerance

    Microbiome predators in changing soils

    Get PDF
    peer-reviewedMicrobiome predators shape the soil microbiome and thereby soil functions. However, this knowledge has been obtained from small-scale observations in fundamental rather than applied settings and has focused on a few species under ambient conditions. Therefore, there are several unaddressed questions on soil microbiome predators: (1) What is the role of microbiome predators in soil functioning? (2) How does global change affect microbiome predators and their functions? (3) How can microbiome predators be applied in agriculture? We show that there is sufficient evidence for the vital role of microbiome predators in soils and stress that global changes impact their functions, something that urgently needs to be addressed to better understand soil functioning as a whole. We are convinced that there is a potential for the application of microbiome predators in agricultural settings, as they may help to sustainably increase plant growth. Therefore, we plea for more applied research on microbiome predators.TeagascArne Schwelm has received funding from the Research Leaders 2025 programme co-funded by Teagasc and the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (grant agreement number 754380). Guixin Li acknowledges China Scholarship Council (CSC; grant no. 202006180073). Rutger A. Wilschut acknowledges funding from the Postdoc Talent Programme of the Wageningen Graduate Schools (WGS). Shunran Hu acknowledges financial support from CSC (No. 201913043) and Hainan University. Yuxin Wang acknowledges CSC (grant no. 202104910024)

    Genetics of Dothistromin Biosynthesis of Dothistroma septosporum: An Update

    Get PDF
    Dothistroma needle blight is one of the most devastating fungal pine diseases worldwide. The disease is characterized by accumulation in pine needles of a red toxin, dothistromin, that is chemically related to aflatoxin (AF) and sterigmatocystin (ST). This review updates current knowledge of the genetics of dothistromin biosynthesis by the Dothistroma septosporum pathogen and highlights differences in gene organization and regulation that have been discovered between the dothistromin and AF/ST systems. Some previously reported genes are promoted or demoted as ‘dothistromin genes’ based on recent research. A new dothistromin gene, norB, is reported, and evidence of dothistromin gene homologs in other Dothideomycete fungi is presented. A hypothesis for the biological role of dothistromin is outlined. Finally, the impact that the availability of the D. septosporum genome sequence will have on dothistromin research is discussed

    The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry.

    Get PDF
    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogensCladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu \u3e61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation

    Investigations of dothistromin gene expression in Dothistroma septosporum and the putative role of dothistromin toxin : a thesis presented in the partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Molecular Biology at Massey University, Palmerston North, New Zealand.

    Get PDF
    Content removed from thesis due to copyright restrictions: Schwelm, A., Barron, N. J., Zhang, S. & Bradshaw, R. E. (in press). Early expression of aflatoxin-like dothistromin genes in the forest pathogen Dothistroma septosporum.Dothistroma septosporum causes pine needle blight, a foliar disease currently causing epidemics in the Northern hemisphere. D. septosporum synthesizes dothistromin, a mycotoxin similar in structure to the aflatoxin (AF) precursor versicolorin B. Orthologs of AF genes, required for the biosynthesis of dothistromin, have been identified along with others that are speculated to be involved in the same pathway. The dothistromin genes are located on a mini-chromosome in Dothistroma septosporum but, in contrast to AF genes, not in a continuous cluster. The aim of this study was to increase knowledge of the biological role of dothistromin, which was previously a suspected pathogenicity factor. To identify putative roles of dothistromin, the dothistromin gene expression was investigated and green fluorescence protein (GFP) reporter gene strains of D. septosporum were developed. Expression analyses of dothistromin genes revealed co-regulation. More surprisingly, dothistromin is produced at an early stage of growth and gene expression is highest during exponential growth. This is fundamentally different to the late exponential/stationary phase expression usually seen with secondary metabolites such as AF. Strains with a dothistromin gene (dotA) promoter-regulated GFP confirmed early expression of the toxin genes, even in spores and germtubes. Parallel studies with transformants containing a GFP-DotA fusion protein suggest spatial organization of dothistromin biosynthesis in intracellular vesicles. The early expression of dothistromin genes led to the hypotheses that dothistromin is either required in the early stage of the plant/fungi interaction, or for inhibiting the growth of competing fungi. Constitutive GFP strains helped to determine that dothistromin is not a pathogenicity factor. However, a putative role of dothistromin in competition with other fungi, including pine-colonizing species, was detected, supporting the second hypothesis. It was shown that dothistromin-producing strains appear to have a competitive advantage which is lacking in dothistromin-deficient strains. However, some competitors were not affected and have potential as biocontrol agents. In summary, this work has led to the discovery of an unusual pattern of regulation of a secondary metabolite, has made substantial progress in identifying the biological role of dothistromin, and has indicated potential for biocontrol of Dothistroma needle blight

    Molecular pathotyping of plasmodiophora brassicae— genomes, marker genes, and obstacles

    No full text
    Here we review the usefulness of the currently available genomic information for the molecular identification of pathotypes. We focused on effector candidates and genes implied to be pathotype specific and tried to connect reported marker genes to Plasmodiophora brassicae genome information. The potentials for practical applications, current obstacles and future perspectives are discussed

    Letter to the Editor: “Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates”

    No full text
    In the publication “Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates”, Laila et al.[...

    Transcriptomic response in symptomless roots of clubroot infected kohlrabi (Brassica oleracea var. gongylodes) mirrors resistant plants

    No full text
    Background: Clubroot disease caused by Plasmodiophora brassicae (Phytomyxea, Rhizaria) is one of the economically most important diseases of Brassica crops. The formation of hypertrophied roots accompanied by altered metabolism and hormone homeostasis is typical for infected plants. Not all roots of infected plants show the same phenotypic changes. While some roots remain uninfected, others develop galls of diverse size. The aim of this study was to analyse and compare the intra-plant heterogeneity of P. brassicae root galls and symptomless roots of the same host plants (Brassica oleracea var. gongylodes) collected from a commercial field in Austria using transcriptome analyses. Results: Transcriptomes were markedly different between symptomless roots and gall tissue. Symptomless roots showed transcriptomic traits previously described for resistant plants. Genes involved in host cell wall synthesis and reinforcement were up-regulated in symptomless roots indicating elevated tolerance against P. brassicae. By contrast, genes involved in cell wall degradation and modification processes like expansion were up-regulated in root galls. Hormone metabolism differed between symptomless roots and galls. Brassinosteroid-synthesis was down-regulated in root galls, whereas jasmonic acid synthesis was down-regulated in symptomless roots. Cytokinin metabolism and signalling were up-regulated in symptomless roots with the exception of one CKX6 homolog, which was strongly down-regulated. Salicylic acid (SA) mediated defence response was up-regulated in symptomless roots, compared with root gall tissue. This is probably caused by a secreted benzoic acid/salicylic acid methyl transferase from the pathogen (PbBSMT), which was one of the highest expressed pathogen genes in gall tissue. The PbBSMT derived Methyl-SA potentially leads to increased pathogen tolerance in uninfected roots. Conclusions: Infected and uninfected roots of clubroot infected plants showed transcriptomic differences similar to those previously described between clubroot resistant and susceptible hosts. The here described intra-plant heterogeneity suggests, that for a better understanding of clubroot disease targeted, spatial analyses of clubroot infected plants will be vital in understanding this economically important disease

    Draft genome resource for the potato powdery scab pathogen spongospora subterranea

    No full text
    The Plasmodiophorida (Phytomyxea, Rhizaria) are a group of protists that infect plants. Of this group, Spongospora subterranea causes major problems for the potato industry by causing powdery scab and root galling of potatoes and as vector for the Potato mop-top virus (PMTV) (genus Pomovirus, family Virgaviridae). A single tuber isolate (SSUBK13) of this uncultivable protist was used to generate DNA for Illumina sequencing. The data were assembled to a draft genome of 28.08 Mb consisting of 2,340 contigs and an L50 of 280. A total of 10,778 genes were predicted and 93% of the BUSCO genes were detected. The presented genome assembly is only the second genome of a plasmodiophorid. The data will accelerate functional genomics to study poorly understood interaction of plasmodiophorids and their hosts
    corecore