44 research outputs found
Microscale spatial distribution and soil organic matter persistence in top and subsoil
The spatial distribution of organic substrates and microscale soil heterogeneity significantly influence organic matter (OM) persistence as constraints on OM accessibility to microorganisms. However, it is unclear how changes in OM spatial heterogeneity driven by factors such as soil depth affect the relative importance of substrate spatial distribution on OM persistence. This work evaluated the decomposition and persistence of 13C and 15N labeled water-extractable OM inputs over 50 days as either hotspot (i.e., pelleted in 1 – 2 mm-size pieces) or distributed (i.e., added as OM < 0.07 µm suspended in water) forms in topsoil (0-0.2 m) and subsoil (0.8-0.9 m) samples of an Andisol. We observed greater persistence of added C in the subsoil with distributed OM inputs relative to hotspot OM, indicated by a 17% reduction in cumulative mineralization of the added C and a 10% higher conversion to mineral-associated OM. A lower substrate availability potentially reduced mineralization due to OM dispersion throughout the soil. NanoSIMS (nanoscale secondary ion mass spectrometry) analysis identified organo-mineral associations on cross-sectioned aggregate interiors in the subsoil. On the other hand, in the topsoil, we did not observe significant differences in the persistence of OM, suggesting that the large amounts of particulate OM already present in the soil outweighed the influence of added OM spatial distribution. Here, we demonstrated under laboratory conditions that the spatial distribution of fresh OM input alone significantly affected the decomposition and persistence of OM inputs in the subsoil. On the other hand, spatial distribution seems to play a lower role in topsoils rich in particulate OM. The divergence in the influence of OM spatial distribution between the top and subsoil is likely driven by differences in soil mineralogy and OM composition.Microscale spatial distribution and soil organic matter persistence in top and subsoilpublishedVersio
Latest Developments from the S-DALINAC*
The S-DALINAC is a 130 MeV superconducting recirculating electron accelerator serving several nuclear and radiation physics experiments as well as driving an infrared free-electron laser. A system of normal conducting rf resonators for noninvasive beam position and current measurement was established. For the measurement of gamma-radiation inside the accelerator cave a system of Compton diodes has been developed and tested. Detailed investigations of the transverse phasespace were carried out with a tomographical reconstruction method of optical transition radiation spots. The method can be applied also to non-Gaussian phasespace distributions. The results are in good accordance with simulations. To improve the quality factor of the superconducting 3 GHz cavities, an external 2K testcryostat was commissioned. The influence of electro-chemical polishing and magnetic shielding is currently under investigation. A digital rf-feedback-system for the accelerator cavities is being developed in order to improve the energy spread of the beam of the S-DALINAC. * Supported by the BMBF under contract no. 06 DA 820, the DFG under contract no. Ri 242/12-1 and -2 and the DFG Graduiertenkolleg 'Physik und Technik von Beschleunigern
Frustrated H-Induced Instability of Mo(110)
Using helium atom scattering Hulpke and L"udecke recently observed a giant
phonon anomaly for the hydrogen covered W(110) and Mo(110) surfaces. An
explanation which is able to account for this and other experiments is still
lacking. Below we present density-functional theory calculations of the atomic
and electronic structure of the clean and hydrogen-covered Mo(110) surfaces.
For the full adsorbate monolayer the calculations provide evidence for a strong
Fermi surface nesting instability. This explains the observed anomalies and
resolves the apparent inconsistencies of different experiments.Comment: 4 pages, 2 figures, submitted to PR
Responses of soil organic carbon, aggregate diameters, and hydraulic properties to long-term organic and conventional farming on a Vertisol in India
Organic matter management can improve soil structural properties. This is crucial for agricultural soils in tropical regions threatened by high rainfall intensities. Compared to conventional farming, organic farming is usually deemed to increase organic carbon and improve soil structural properties such as stability and permeability. However, how much, if any, buildup of organic carbon is possible or indeed occurring also depends on soil type and environmental factors. We compared the impact of seven years of organic farming (annually 13.6 t ha−1 of composted manure) with that of conventional practices (2 t ha−1 of farmyard manure with 150–170 kg N ha−1 of mineral fertilizers) on soil structural properties. The study was conducted on a Vertisol in India with a two-year crop rotation of cotton soybean wheat. Despite large differences in organic amendment application, organic carbon was not significantly different at 9.6 mg C g−1 on average in the topsoil. However, the size distribution of water-stable aggregates shifted toward more aggregates <137 μm in the organic systems. Cumulative water intake was lower compared to the conventional systems, leading to higher runoff and erosion. These changes might be related to the lower pH and higher exchangeable sodium in the organic systems. Our results indicate that higher application of organic amendments did not lead to higher soil organic carbon and associated improvement in soil structures properties compared to integrated fertilization in this study. Chemical properties may dominate soil aggregation retarding the uptake and integration of organic amendments for sustainable agricultural intensification in tropical, semiarid climates
Process sequence of soil aggregate formation disentangled through multi-isotope labelling
Microaggregates (250 µm) that resisted 60 J mL−1 ultrasonic dispersion. Afterwards, we assessed the C, N, Fe, and Si stable isotope composition in each size fraction. After four weeks we found a rapid build-up of stable macroaggregates comprising almost 50 % of soil mass in the treatment with plants and respective soil rooting, but only 5 % when plants were absent. The formation of these stable macroaggregates proceeded with time. Soil organic carbon (SOC) contents were elevated by 15 % in the large macroaggregates induced by plant growth. However, the recovery of EPS-derived 13C was below 20 % after 4 weeks, indicating rapid turnover in treatments both with and without plants. The remaining EPS-derived C was mainly found in macroaggregates when plants were present and in the occluded small microaggregates (<20 µm) when plants were absent. The excess of bacterial 15N closely followed the pattern of EPS-derived 13C (R2 = 0.72). In contrast to the organic gluing agents, the goethite-57Fe and montmorillonite-29Si were relatively equally distributed across all size fractions. Overall, microaggregates were formed within weeks. Roots enforced this process by stabilizing microaggregates within stable macroaggregates. As time proceeded the labelled organic components decomposed, while the labelled secondary oxides and clay minerals increasingly contributed to aggregate stabilization and turnover at the scale of months and beyond. Consequently, the well-known hierarchical organization of aggregation follows a clear chronological sequence of stabilization and turnover processes
Architecture of soil microaggregates: Advanced methodologies to explore properties and functions
The functions of soils are intimately linked to their three-dimensional pore space and the associated biogeochemical interfaces, mirrored in the complex structure that developed during pedogenesis. Under stress overload, soil disintegrates into smaller compound structures, conventionally named aggregates. Microaggregates (<250 µm) are recognized as the most stable soil structural units. They are built of mineral, organic, and biotic materials, provide habitats for a vast diversity of microorganisms, and are closely involved in the cycling of matter and energy. However, exploring the architecture of soil microaggregates and their linkage to soil functions remains a challenging but demanding scientific endeavor. With the advent of complementary spectromicroscopic and tomographic techniques, we can now assess and visualize the size, composition, and porosity of microaggregates and the spatial arrangement of their interior building units. Their combinations with advanced experimental pedology, multi-isotope labeling experiments, and computational approaches pave the way to investigate microaggregate turnover and stability, explore their role in element cycling, and unravel the intricate linkage between structure and function. However, spectromicroscopic techniques operate at different scales and resolutions, and have specific requirements for sample preparation and microaggregate isolation; hence, special attention must be paid to both the separation of microaggregates in a reproducible manner and the synopsis of the geography of information that originates from the diverse complementary instrumental techniques. The latter calls for further development of strategies for synlocation and synscaling beyond the present state of correlative analysis. Here, we present examples of recent scientific progress and review both options and challenges of the joint application of cutting-edge techniques to achieve a sophisticated picture of the properties and functions of soil microaggregates
ECMO for COVID-19 patients in Europe and Israel
Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO
support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed
on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients
The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence
Correlations between organic carbon (OC) and fine mineral particles corroborate the important role of the abundance of soil minerals with reactive surfaces to bind and increase the persistence of organic matter (OM). The storage of OM broadly consists of particulate and mineral-associated forms. Correlative studies on the impact of fine mineral soil particles on OM storage mostly combined data from differing sites potentially confounded by other environmental factors. Here, we analyzed OM storage in a soil clay content gradient of 5–37% with similar farm management and mineral composition. Throughout the clay gradient, soils contained 14 mg OC g−1 on average in the bulk soil without showing any systematic increase. Density fractionation revealed that a greater proportion of OC was stored as occluded particulate OM in the high clay soils (18–37% clay). In low clay soils (5–18% clay), the fine mineral-associated fractions had up to two times higher OC contents than high clay soils. Specific surface area measurements revealed that more mineral-associated OM was related to higher OC loading. This suggests that there is a potentially thicker accrual of more OM at the same mineral surface area within fine fractions of the low clay soils. With increasing clay content, OM storage forms contained more particulate OC and mineral-associated OC with a lower surface loading. This implies that fine mineral-associated OC storage in the studied agricultural soils was driven by thicker accrual of OM and decoupled from clay content limitations.Deutsche Forschungsgemeinschaft
http://dx.doi.org/10.13039/501100001659Technische Universität München (1025)https://doi.org/10.14459/2018mp146241
The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence
Correlations between organic carbon (OC) and fine mineral particles corroborate the important role of the abundance of soil minerals with reactive surfaces to bind and increase the persistence of organic matter (OM). The storage of OM broadly consists of particulate and mineral-associated forms. Correlative studies on the impact of fine mineral soil particles on OM storage mostly combined data from differing sites potentially confounded by other environmental factors. Here, we analyzed OM storage in a soil clay content gradient of 5–37% with similar farm management and mineral composition. Throughout the clay gradient, soils contained 14 mg OC g⁻¹ on average in the bulk soil without showing any systematic increase. Density fractionation revealed that a greater proportion of OC was stored as occluded particulate OM in the high clay soils (18–37% clay). In low clay soils (5–18% clay), the fine mineral-associated fractions had up to two times higher OC contents than high clay soils. Specific surface area measurements revealed that more mineral-associated OM was related to higher OC loading. This suggests that there is a potentially thicker accrual of more OM at the same mineral surface area within fine fractions of the low clay soils. With increasing clay content, OM storage forms contained more particulate OC and mineral-associated OC with a lower surface loading. This implies that fine mineral-associated OC storage in the studied agricultural soils was driven by thicker accrual of OM and decoupled from clay content limitations