61 research outputs found

    Gene Expression of Components of the Insulin/Insulin-Like Signaling Pathway in Response to Heat Stress in the Garter Snake, \u3ci\u3eThamnophis Elegans\u3c/i\u3e

    Get PDF
    The insulin/insulin-like signaling (IIS) pathway is an evolutionary conserved molecular signaling pathway that regulates growth, reproduction, stress resistance, and longevity in response to nutrition and external stress. While the constituents of this pathway and their functions are relatively well understood in laboratory model animals, they have not been explored in many other organisms, with notable exceptions in the fisheries literature. We tested for the gene expression of four key components of this pathway in the garter snake (Thamnophis elegans) liver, and determine how the transcription of these components responds to heat stress. We found that the two insulin-like growth factor ligands (IGF-1 and IGF-2) and the receptors (IGF-1 Receptor and M6P/ IGF-2 Receptor, or IGF-1R and IGF-2R) are expressed in garter snake liver tissue. Under normal laboratory conditions, IGF-2 and IGF-2R are expressed at a higher level than IGF-1 and IGF-1R. In response to heat stress, IGF-1 expression remained the same, IGF-2 expression decreased, and the expression of both receptors increased. These results demonstrate that elements of the IIS pathway are responsive to heat stress in snakes. Further studies are needed to fully understand the biological consequences of this response

    Sex Differences in Sand Lizard Telomere Inheritance: Paternal Epigenetic Effects Increases Telomere Heritability and Offspring Survival

    Get PDF
    To date, the only estimate of the heritability of telomere length in wild populations comes from humans. Thus, there is a need for analysis of natural populations with respect to how telomeres evolve.Here, we show that telomere length is heritable in free-ranging sand lizards, Lacerta agilis. More importantly, heritability estimates analysed within, and contrasted between, the sexes are markedly different; son-sire heritability is much higher relative to daughter-dam heritability. We assess the effect of paternal age on Telomere Length (TL) and show that in this species, paternal age at conception is the best predictor of TL in sons. Neither paternal age per se at blood sampling for telomere screening, nor corresponding age in sons impact TL in sons. Processes maintaining telomere length are also associated with negative fitness effects, most notably by increasing the risk of cancer and show variation across different categories of individuals (e.g. males vs. females). We therefore tested whether TL influences offspring survival in their first year of life. Indeed such effects were present and independent of sex-biased offspring mortality and offspring malformations.TL show differences in sex-specific heritability with implications for differences between the sexes with respect to ongoing telomere selection. Paternal age influences the length of telomeres in sons and longer telomeres enhance offspring survival

    The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage

    Get PDF
    Background: We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing.Results: Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented.Conclusions: Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders

    Population Structure of the Gopher Tortise (\u3cem\u3eGopherus polyphemus\u3c/em\u3e) in Florida, using Microsatellites

    Get PDF
    Gopher tortoise (Gopherus polyphemus) population sizes have drastically declined in the past 100 years. Much of this decline has been attributed to past human predation, to habitat loss from human development, and potentially to the recently discovered upper respiratory tract disease. An understanding of the genetic structure among populations is critical for the long-term success of relocation and other management strategies. This research focuses on the development of a suite of genetic markers and the answers they provided to questions concerning present day population genetics and its use in management. In addition, this study provides inference on historical refugia and dispersal patterns of the gopher tortoise through the Pleistocene. Nine microsatellite loci were identified, optimized, and characterized from a G. polyphemus microsatellite-enriched DNA library. These loci are applicable for population level analysis along with parentage analysis in all Gopherus species. In addition, a few of the loci also work in other Testudinies. Application of these markers to eighteen Florida and two Georgia populations of gopher tortoises reveal considerable amount of genetic diversity within the species and substantial genetic subdivision among populations, especially in the northern part of the Florida peninsula and southern Georgia. Admixture and genetic homogenization in central Florida may be attributed to past human mitigation events as much of this area has been substantially developed. These data indicate a more conservative approach to relocation is necessary if the goal is to maintain the genetic distinctiveness of these areas. Lastly, these genetic data, in conjunction with historical geological, climactic, and fossil records, were used to identify gopher tortoise refugia, and dispersal patterns during the Pleistocene. Within Florida, four major genetic assemblages were determined that correspond to four Pleistocene ridges that would have been present at high sea levels: Lake Wales Ridge, Brooksville Ridge, Southern Atlantic Coastal Ridge, and Mt. Dora Ridge. In addition, these data indicate that tortoises that dispersed into southeastern Florida after the fall in sea level were most closely related to tortoises from the Brooksville Ridge. Likewise, tortoises in northwestern Florida and southern Georgia were most closely related to tortoises from the Mt. Dora Ridge

    Data from: Here and there, but not everywhere: repeated loss of uncoupling protein 1 in amniotes

    No full text
    Endothermy is an evolutionary innovation in eutherian mammals and birds. In eutherian mammals, UCP1 is a key protein in adaptive nonshivering thermogenesis (NST). Although ucp1 arose early in the vertebrate lineage, the loss of ucp1 was previously documented in several reptile species (including birds). Here we determine that ucp1 was lost at the base of the reptile lineage, as we fail to find ucp1 in every major reptile lineage. Furthermore, though UCP1 plays a key role in mammalian NST, we confirm that pig has lost several exons from ucp1 and conclude that pig is not a sole outlier as the only eutherian mammal lineage to do so. Through similarity searches and synteny analysis, we show that ucp1 has also been lost/pseudogenized in Delphinidae (dolphin, orca) and potentially Xenarthra (sloth, armadillo) and Afrotheria (hyrax). These lineages provide models for investigating alternate mechanisms of thermoregulation and energy metabolism in the absence of functional UCP1. Further, the repeated losses of a functional UCP1 suggest the pervasiveness of NST via UCP1 across the mammalian lineage needs re-evaluation

    Supplemental_File2_Tables

    No full text
    This is a summary of results for each species analyzed in our study, including presence of ucp1 annotation, synteny analysis, and blasting of raw reads. This table also includes the ftp links to the sequence data used for each species. Species highlighted in purple had no evidence of ucp1 in Ensembl and were investigated further through synteny analysis and BLAST search of their raw data

    How accurately do behavioural observations predict reproductive success in free-ranging lizards?

    Get PDF
    Behavioural ecologists often use data on patterns of male - female association to infer reproductive success of free-ranging animals. For example, a male seen with several females during the mating season is predicted to father more offspring than a male not seen with any females. We explored the putative correlation between this behaviour and actual paternity (as revealed by microsatellite data) from a long-term study on sand lizards (Lacerta agilis), including behavioural observations of 574 adult males and 289 adult females, and paternity assignment of more than 2500 offspring during 1998 - 2007. The number of males that contributed paternity to a female\u27s clutch was correlated with the number of males seen accompanying her in the field, but not with the number of copulation scars on her body. The number of females that a male accompanied in the field predicted the number of females with whom he fathered offspring, and his annual reproductive success (number of progeny). Although behavioural data explained less than one-third of total variance in reproductive success, our analysis supports the utility of behavioural-ecology studies for predicting paternity in free-ranging reptiles

    A study of swirled air method in the reduction of emissions from the combustion of liquid fuel

    No full text
    The complex molecular network that underlies physiological stress response is comprised of nodes (proteins, metabolites, mRNAs, etc.) whose connections span cells, tissues and organs. Variable nodes are points in the network upon which natural selection may act. Thus, identifying variable nodes will reveal how this molecular stress network may evolve among populations in different habitats and how it might impact life-history evolution. Here, we use physiological and genetic assays to test whether laboratory-born juveniles from natural populations of garter snakes (Thamnophis elegans), which have diverged in their life-history phenotypes, vary concomitantly at candidate nodes of the stress response network, (i) under unstressed conditions and (ii) in response to an induced stress. We found that two common measures of stress (plasma corticosterone and liver gene expression of heat shock proteins) increased under stress in both life-history phenotypes. In contrast, the phenotypes diverged at four nodes both under unstressed conditions and in response to stress: circulating levels of reactive oxygen species (superoxide, H2O2); liver gene expression of GPX1 and erythrocyte DNA damage. Additionally, allele frequencies for SOD2 diverge from neutral markers, suggesting diversifying selection on SOD2 alleles. This study supports the hypothesis that these life-history phenotypes have diverged at the molecular level in how they respond to stress, particularly in nodes regulating oxidative stress. Furthermore, the differences between the life-history phenotypes were more pronounced in females. We discuss the responses to stress in the context of the associated life-history phenotype and the evolutionary pressures thought to be responsible for divergence between the phenotypes

    Results Tables from Here and there, but not everywhere: repeated loss of <i>uncoupling protein 1</i> in amniotes

    No full text
    An excel document with 30 supplmental tables (one per tab). The first tab lists the titles and legends of the tables
    corecore