31 research outputs found

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Regulation of myogenesis by retinoic acid

    No full text
    L'acide rĂ©tinoĂŻque (AR) rĂ©gule la myogĂ©nĂšse embryonnaire. Dans le cadre de ce projet de thĂšse, nous avons d'une part utilisĂ© l'AR pour moduler la myogĂ©nĂšse embryonnaire, dans la perspective d'Ă©tudier les consĂ©quences de cette modulation sur le potentiel ultĂ©rieur de croissance et identifier les mĂ©canismes molĂ©culaires mobilisĂ©s.D'autre part, nous avons Ă©tudiĂ© la fonction de deux gĂšnes rĂ©gulĂ©s par l'AR et susceptibles de participer au contrĂŽle de la myogĂ©nĂšse embryonnaire.La premiĂšre partie du travail a Ă©tĂ© rĂ©alisĂ©e sur les modĂšles truite et poisson-zĂšbre. Nous avons montrĂ© que chez la truite comme chez le poisson zĂšbre, une incubation dans l'AR entrainait une activation de l'expression de Fgf8et de la diffĂ©renciation des fibres musculaires rapides. Toutefois, chez la truite, nous n'avons pas pu mettre en Ă©vidence de rĂ©gulation des MRF, indiquant qu'une autre voie est utilisĂ©e pour activer la myogĂ©nĂšse chez cette espĂšce.Dans la seconde partie de ce travail, la fonction de deux gĂšnes rĂ©gulĂ©s par l'AR et exprimĂ©s dans le mĂ©soderme a Ă©tĂ© Ă©tudiĂ©e chez le poisson-zĂšbre. Le gĂšne vertnin est exprimĂ© essentiellement dans le tailbud. Quand il est inactivĂ© par injection d'un oligo nuclĂ©otide morpholino antisens, on observe une altĂ©ration de la formation des somites (mais pas de modification apparente du processus de segmentation) et une altĂ©ration de l'intĂ©gritĂ© des fibres lentes. Les fibres lentes sont en effet irrĂ©guliĂšrement espacĂ©es et les espaces au niveau des myoseptes verticaux peuvent ĂȘtre anormalement larges et les jonctions myotendineuses mal formĂ©es. Le gĂšne arrestine ÎČ2aest exprimĂ© dans les somites nĂ©o-formĂ©s puis Ă©galement dans le mĂ©soderme prĂ©somitique et le tailbud. Son inactivation par injection d'OM antisens entraine l'apparition du phĂ©notype U-type et une altĂ©ration de la morphologie des fibres lentes avec des fibres qui se dĂ©tachent des jonctions myotendineuses.Retinoic acid (RA) regulates embryonic myogenesis. During this thesis project, we first used RA to modulate embryonic myogenesis in order to study consequences of this modulation on the future potential for growth and to identify the underlying molecular mechanisms. Second part deals with the characterisation of the function of two genes regulated by the RA which may be involved in the control of embryonic myogenesis.The first part of the work was performed on the trout and zebrafish models. We have shown that in trout as in zebrafish, incubation in RA produced an activation of Fgf8 expression and differentiation of fast muscle fibers.However in trout, we did not observed regulation of MRF expression indicating that an alternative pathway isused to activate myogenesis in this species.In the second part of this work, the function of two genes regulated by the RA and expressed in the mesodermwas studied in zebrafish. The vertnin gene is expressed primarily in the tailbud. When it is inactivated by injection of antisense morpholino oligonucleotide, there is an alteration in the somites morphogenesis (but no apparent change in the process of segmentation) and impairment of the integrity of the slow muscle fibers. Slowfibers are indeed irregularly spaced and the vertical myosepta can be abnormally large. In addition myotendinous junctions display some abnormal branches. The arrestin ÎČ 2a gene is expressed in last formed somites and then also in the presomitic mesoderm and the tailbud. Its inactivation by injection of antisense MO leads to the appearance of the U-type phenotype and alteration of the slow muscle fibers morphology which detach frommyotendinous junction

    Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness

    Get PDF
    Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440*]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384*]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs*59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated

    Methotrexate and rheumatoid arthritis associated interstitial lung disease

    No full text
    Methotrexate (MTX) is a key anchor drug for rheumatoid arthritis (RA) management. Fibrotic interstitial lung disease (ILD) is a common complication of RA. Whether MTX exposure increases the risk of ILD in patients with RA is disputed. We aimed to evaluate the association of prior MTX use with development of RA-ILD
    corecore