526 research outputs found

    Electrospun Nanofibers for Neural Tissue Engineering

    Get PDF
    Biodegradable nanofibers produced by electrospinning represent a new class of promising scaffolds to support nerve regeneration. We begin with a brief discussion on electrospinning of nanofibers and methods for controlling the structure, porosity, and alignment of the electrospun nanofibers. The methods include control of the nanoscale morphology and microscale alignment for the nanofibers, as well as the fabrication of macroscale, three-dimensional tubular structures. We then highlight recent studies that utilize electrospun nanofibers to manipulate biological processes relevant to nervous tissue regeneration, including stem cell differentiation, guidance of neurite extension, and peripheral nerve injury treatments. The main objective of this feature article is to provide valuable insights into methods for investigating the mechanisms of neurite growth on novel nanofibrous scaffolds and optimization of the nanofiber scaffolds and conduits for repairing peripheral nerve injuries

    Primary cilia as the nexus of biophysical and hedgehog signaling at the tendon enthesis

    Get PDF
    The tendon enthesis is a fibrocartilaginous tissue critical for transfer of muscle forces to bone. Enthesis pathologies are common, and surgical repair of tendon to bone is plagued by high failure rates. At the root of these failures is a gap in knowledge of how the tendon enthesis is formed and maintained. We tested the hypothesis that the primary cilium is a hub for transducing biophysical and hedgehog (Hh) signals to regulate tendon enthesis formation and adaptation to loading. Primary cilia were necessary for enthesis development, and cilia assembly was coincident with Hh signaling and enthesis mineralization. Cilia responded inversely to loading; increased loading led to decreased cilia and decreased loading led to increased cilia. Enthesis responses to loading were dependent on Hh signaling through cilia. Results imply a role for tendon enthesis primary cilia as mechanical responders and Hh signal transducers, providing a therapeutic target for tendon enthesis pathologies

    Mechanisms for Generating the Autonomous cAMP-Dependent Protein Kinase Required for Long-Term Facilitation in Aplysia

    Get PDF
    AbstractThe formation of a persistently active cAMP-dependent protein kinase (PKA) is critical for establishing long-term synaptic facilitation (LTF) in Aplysia. The injection of bovine catalytic (C) subunits into sensory neurons is sufficient to produce protein synthesis–dependent LTF. Early in the LTF induced by serotonin (5-HT), an autonomous PKA is generated through the ubiquitin–proteasome-mediated proteolysis of regulatory (R) subunits. The degradation of R occurs during an early time window and appears to be a key function of proteasomes in LTF. Lactacystin, a specific proteasome inhibitor, blocks the facilitation induced by 5-HT, and this block is rescued by injecting C subunits. R is degraded through an allosteric mechanism requiring an elevation of cAMP coincident with the induction of a ubiquitin carboxy-terminal hydrolase

    Gold nanocages covered by smart polymers for controlled release with near-infrared light

    Get PDF
    Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region

    A Case-Control Study of Peripheral Blood Mitochondrial DNA Copy Number and Risk of Renal Cell Carcinoma

    Get PDF
    Background: Low mitochondrial DNA (mtDNA) copy number is a common feature of renal cell carcinoma (RCC), and may influence tumor development. Results: from a recent case-control study suggest that low mtDNA copy number in peripheral blood may be a marker for increased RCC risk. In an attempt to replicate that finding, we measured mtDNA copy number in peripheral blood DNA from a U.S. population-based case-control study of RCC. Methodology/Principal Findings: Relative mtDNA copy number was measured in triplicate by a quantitative real-time PCR assay using DNA extracted from peripheral whole blood. Cases (n = 603) had significantly lower mtDNA copy number than controls (n = 603; medians 0.85, 0.91 respectively; P = 0.0001). In multiple logistic regression analyses, the lowest quartile of mtDNA copy number was associated with a 60% increase in RCC risk relative to the highest quartile (OR = 1.6, 95% CI = 1.1–2.2; Ptrend = 0.009). This association remained in analyses restricted to cases treated by surgery alone (OR Q1 = 1.4, 95% CI = 1.0–2.1) and to localized tumors (2.0, 1.3–2.8). Conclusions/Significance: Our findings from this investigation, to our knowledge the largest of its kind, offer important confirmatory evidence that low mtDNA copy number is associated with increased RCC risk. Additional research is needed to assess whether the association is replicable in prospective studies

    International Veterinary Epilepsy Task Force Consensus Proposal: Diagnostic approach to epilepsy in dogs

    Get PDF
    This article outlines the consensus proposal on diagnosis of epilepsy in dogs by the International Veterinary Epilepsy Task Force. The aim of this consensus proposal is to improve consistency in the diagnosis of epilepsy in the clinical and research settings. The diagnostic approach to the patient presenting with a history of suspected epileptic seizures incorporates two fundamental steps: to establish if the events the animal is demonstrating truly represent epileptic seizures and if so, to identify their underlying cause. Differentiation of epileptic seizures from other non-epileptic episodic paroxysmal events can be challenging. Criteria that can be used to make this differentiation are presented in detail and discussed. Criteria for the diagnosis of idiopathic epilepsy (IE) are described in a three-tier system. Tier I confidence level for the diagnosis of IE is based on a history of two or more unprovoked epileptic seizures occurring at least 24 h apart, age at epileptic seizure onset of between six months and six years, unremarkable inter-ictal physical and neurological examination, and no significant abnormalities on minimum data base blood tests and urinalysis. Tier II confidence level for the diagnosis of IE is based on the factors listed in tier I and unremarkable fasting and post-prandial bile acids, magnetic resonance imaging (MRI) of the brain (based on an epilepsy-specific brain MRI protocol) and cerebrospinal fluid (CSF) analysis. Tier III confidence level for the diagnosis of IE is based on the factors listed in tier I and II and identification of electroencephalographic abnormalities characteristic for seizure disorders. The authors recommend performing MRI of the brain and routine CSF analysis, after exclusion of reactive seizures, in dogs with age at epileptic seizure onset 6 years, inter-ictal neurological abnormalities consistent with intracranial neurolocalisation, status epilepticus or cluster seizure at epileptic seizure onset, or a previous presumptive diagnosis of IE and drug-resistance with a single antiepileptic drug titrated to the highest tolerable dose
    • …
    corecore