175 research outputs found
Effects of graded levels of dietary pomegranate peel on methane and nitrogen losses, and metabolic and health indicators in dairy cows
This study aimed to quantify the effects of dietary inclusion of tannin-rich pomegranate peel (PP) on intake, methane and nitrogen (N) losses, and metabolic and health indicators in dairy cows. Four multiparous, late-lactating Brown Swiss dairy cows (796 kg body weight; 29 kg/d of energy corrected milk yield) were randomly allocated to 3 treatments in a randomized cyclic change-over design with 3 periods, each comprising 14 d of adaptation, 7 d of milk, urine, and feces collection, and 2 d of methane measurements. Treatments were formulated using PP that replaced on a dry matter (DM) basis 0% (control), 5%, and 10% of the basal mixed ration (BMR) consisting of corn and grass silage, alfalfa, and concentrate. Gaseous exchange of the cows was determined in open-circuit respiration chambers. Blood samples were collected on d 15 of each period. Individual feed intake as well as feces and urine excretion were quantified, and representative samples were collected for analyses of nutrients and phenol composition. Milk was analyzed for concentrations of fat, protein, lactose, milk urea N, and fatty acids. Total phenols and antioxidant capacity in milk and plasma were determined. In serum, the concentrations of urea and bilirubin as well as the activities of alanine aminotransferase (ALT), aspartate aminotransferase, glutamate dehydrogenase, alkaline phosphatase, and γ-glutamyl transferase were measured. The data was subjected to ANOVA with the Mixed procedure of SAS, with treatment and period as fixed and animal as random effects. The PP and BMR contained 218 and 3.5 g total extractable tannins per kg DM, respectively, and thereof 203 and 3.3 g hydrolyzable tannins. Total DM intake, energy corrected milk, and methane emission (total, yield, and intensity) were not affected by PP supplementation. The proportions of C18:2 n-6 and C18:3 n-3 in milk increased linearly as the amount of PP increased in the diet. Milk urea N, blood urea N, and urinary N excretion decreased linearly with the increase in dietary PP content. Total phenols and antioxidant capacity in milk and plasma were not affected by the inclusion of PP. The activity of ALT increased in a linear manner with the inclusion of PP. In conclusion, replacing up to 10% of BMR with PP improved milk fatty acid composition and alleviated metabolic and environmental N load. However, the elevated serum ALT activity indicates an onset of liver stress even at 5% PP, requiring the development of adaptation protocols for safe inclusion of PP in ruminant diets
Formation of phase lags at the cyclotron energies in the pulse profiles of magnetized, accreting neutron stars
Context: Accretion-powered X-ray pulsars show highly energy-dependent and
complex pulse-profile morphologies. Significant deviations from the average
pulse profile can appear, in particular close to the cyclotron line energies.
These deviations can be described as energy-dependent phase lags, that is, as
energy-dependent shifts of main features in the pulse profile. Aims: Using a
numerical study we explore the effect of cyclotron resonant scattering on
observable, energy-resolved pulse profiles. Methods: We generated the
observable emission as a function of spin phase, using Monte Carlo simulations
for cyclotron resonant scattering and a numerical ray-tracing routine
accounting for general relativistic light-bending effects on the intrinsic
emission from the accretion columns. Results: We find strong changes in the
pulse profile coincident with the cyclotron line energies. Features in the
pulse profile vary strongly with respect to the average pulse profile with the
observing geometry and shift and smear out in energy additionally when assuming
a non-static plasma. Conclusions: We demonstrate how phase lags at the
cyclotron energies arise as a consequence of the effects of angular
redistribution of X-rays by cyclotron resonance scattering in a strong magnetic
field combined with relativistic effects. We also show that phase lags are
strongly dependent on the accretion geometry. These intrinsic effects will in
principle allow us to constrain a system's accretion geometry.Comment: 4 pages, 4 figures; updated reference lis
Looking at A 0535+26 at low luminosities with NuSTAR
We report on two NuSTAR observations of the HMXB A 0535+26 taken toward the
end of its normal 2015 outburst at very low keV luminosities of
erg/s and erg/s which are
complemented by 9 Swift observations. The data clearly confirm indications seen
in earlier data that the source's spectral shape softens as it becomes fainter.
The smooth, exponential rollover at high energies present in the first
observation evolves to a much more abrupt steepening of the spectrum at
keV. The continuum evolution can be well described with emission from a
magnetized accretion column, modeled using the compmag model modified by an
additional Gaussian emission component for the fainter observation. Between the
two observations, the optical depth changes from to
, the electron temperature remains constant, and there is
an indication that the column decreases in radius. Since the energy resolved
pulse profiles remain virtually unchanged in shape between the two
observations, the emission properties of the accretion column, however, reflect
the same accretion regime. This conclusion is also confirmed by our result that
the energy of the cyclotron resonant scattering feature (CRSF) at
keV is independent of the luminosity, implying that the magnetic field in the
region in which the observed radiation is produced is the same in both
observations. Finally, we also constrain the evolution of the continuum
parameters with rotational phase of the neutron star. The width of the CRSF
could only be constrained for the brighter observation. Based on Monte-Carlo
simulations of CRSF formation in single accretion columns, its pulse phase
dependence supports a simplified fan beam emission pattern. The evolution of
the CRSF width is very similar to that of the CRSF depth, which is in
disagreement with expectations.Comment: 14 pages, 11 figures, 3 tables, accepted for publication in A&
Spectral and Timing Analysis of the accretion-powered pulsar 4U 1626-67 observed with Suzaku and NuSTAR
We present an analysis of the spectral shape and pulse profile of the
accretion-powered pulsar 4U 1626-67 observed with Suzaku and NuSTAR during a
spin-up state. The pulsar, which experienced a torque reversal to spin-up in
2008, has a spin period of 7.7 s. Comparing the phase-averaged spectra obtained
with Suzaku in 2010 and with NuSTAR in 2015, we find that the spectral shape
changed between the two observations: the 3-10 keV flux increased by 5% while
the 30-60 keV flux decreased significantly by 35%. Phase-averaged and
phase-resolved spectral analysis shows that the continuum spectrum observed by
NuSTAR is well described by an empirical NPEX continuum with an added broad
Gaussian emission component around the spectral peak at 20 keV. Taken together
with the observed Pdot value obtained from Fermi/GBM, we conclude that the
spectral change between the Suzaku and NuSTAR observations was likely caused by
an increase of the accretion rate. We also report the possible detection of
asymmetry in the profile of the fundamental cyclotron line. Furthermore, we
present a study of the energy-resolved pulse profiles using a new relativistic
ray tracing code, where we perform a simultaneous fit to the pulse profiles
assuming a two-column geometry with a mixed pencil- and fan-beam emission
pattern. The resulting pulse profile decompositions enable us to obtain
geometrical parameters of accretion columns (inclination, azimuthal and polar
angles) and a fiducial set of beam patterns. This information is important to
validate the theoretical predictions from radiation transfer in a strong
magnetic field.Comment: 19 pages, 14 figures, Accepted for publication in ApJ on May 5, 201
Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling
Electron cyclotron resonant scattering features (CRSFs) are observed as
absorption-like lines in the spectra of X-ray pulsars. A significant fraction
of the computing time for Monte Carlo simulations of these quantum mechanical
features is spent on the calculation of the mean free path for each individual
photon before scattering, since it involves a complex numerical integration
over the scattering cross section and the (thermal) velocity distribution of
the scattering electrons.
We aim to numerically calculate interpolation tables which can be used in
CRSF simulations to sample the mean free path of the scattering photon and the
momentum of the scattering electron. The tables also contain all the
information required for sampling the scattering electron's final spin.
The tables were calculated using an adaptive Simpson integration scheme. The
energy and angle grids were refined until a prescribed accuracy is reached. The
tables are used by our simulation code to produce artificial CRSF spectra. The
electron momenta sampled during these simulations were analyzed and justified
using theoretically determined boundaries.
We present a complete set of tables suited for mean free path calculations of
Monte Carlo simulations of the cyclotron scattering process for conditions
expected in typical X-ray pulsar accretion columns (0.01<B/B_{crit}<=0.12,
where B_{crit}=4.413x10^{13} G and 3keV<=kT<15keV). The sampling of the tables
is chosen such that the results have an estimated relative error of at most
1/15 for all points in the grid. The tables are available online at
http://www.sternwarte.uni-erlangen.de/research/cyclo.Comment: A&A, in pres
Recommended from our members
Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants - a review
In vitro fermentation techniques (IVFT) have been widely used to evaluate the nutritivevalue of feeds for ruminants and in the last decade to assess the effect of different nutritionalstrategies on methane (CH4) production. However, many technical factors may influencethe results obtained. The present review has been prepared by the ‘Global Network’ FACCE-JPI international research consortium to provide a critical evaluation of the main factorsthat need to be considered when designing, conducting and interpreting IVFT experimentsthat investigate nutritional strategies to mitigate CH4emission from ruminants. Given theincreasing and wide-scale use of IVFT, there is a need to critically review reports in the lit-erature and establish what criteria are essential to the establishment and implementationof in vitro techniques. Key aspects considered include: i) donor animal species and numberof animal used, ii) diet fed to donor animals, iii) collection and processing of rumen fluidas inoculum, iv) choice of substrate and incubation buffer, v) incubation procedures andCH4measurements, vi) headspace gas composition and vii) comparability of in vitro andin vivo measurements. Based on an evaluation of experimental evidence, a set of techni-cal recommendations are presented to harmonize IVFT for feed evaluation, assessment ofrumen function and CH4production
Distorted cyclotron line profile in Cep X-4 as observed by NuSTAR
We present spectral analysis of NuSTAR and Swift observations of Cep X-4
during its outburst in 2014. We observed the source once during the peak of the
outburst and once during the decay, finding good agreement in the spectral
shape between the observations. We describe the continuum using a powerlaw with
a Fermi-Dirac cutoff at high energies. Cep X-4 has a very strong cyclotron
resonant scattering feature (CRSF) around 30 keV. A simple absorption-like line
with a Gaussian optical depth or a pseudo-Lorentzian profile both fail to
describe the shape of the CRSF accurately, leaving significant deviations at
the red side of the line. We characterize this asymmetry with a second
absorption feature around 19 keV. The line energy of the CRSF, which is not
influenced by the addition of this feature, shows a small but significant
positive luminosity dependence. With luminosities between (1-6)e36 erg/s, Cep
X-4 is below the theoretical limit where such a correlation is expected. This
behavior is similar to Vela X-1 and we discuss parallels between the two
systems.Comment: 6 pages, 4 figure, accepted for publication in ApJ letter
Recommended from our members
Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants
Ruminant husbandry is a major source of anthropogenic greenhouse gases (GHG). Filling knowledge gaps and providing expert recommendation are important for defining future research priorities, improving methodologies and establishing science-based GHG mitigation solutions to government and non-governmental organisations, advisory/extension networks, and the ruminant livestock sector. The objectives of this review is to summarize published literature to provide a detailed assessment of the methodologies currently in use for measuring enteric methane (CH4) emission from individual animals under specific conditions, and give recommendations regarding their application. The methods described include respiration chambers and enclosures, sulphur hexafluoride tracer (SF6) technique, and techniques based on short-term measurements of gas concentrations in samples of exhaled air. This includes automated head chambers (e.g. the GreenFeed system), the use of carbon dioxide (CO2) as a marker, and (handheld) laser CH4 detection. Each of the techniques are compared and assessed on their capability and limitations, followed by methodology recommendations. It is concluded that there is no ‘one size fits all’ method for measuring CH4 emission by individual animals. Ultimately, the decision as to which method to use should be based on the experimental objectives and resources available. However, the need for high throughput methodology e.g. for screening large numbers of animals for genomic studies, does not justify the use of methods that are inaccurate. All CH4 measurement techniques are subject to experimental variation and random errors. Many sources of variation must be considered when measuring CH4 concentration in exhaled air samples without a quantitative or at least regular collection rate, or use of a marker to indicate (or adjust) for the proportion of exhaled CH4 sampled. Consideration of the number and timing of measurements relative to diurnal patterns of CH4 emission and respiratory exchange are important, as well as consideration of feeding patterns and associated patterns of rumen fermentation rate and other aspects of animal behaviour. Regardless of the method chosen, appropriate calibrations and recovery tests are required for both method establishment and routine operation. Successful and correct use of methods requires careful attention to detail, rigour, and routine self-assessment of the quality of the data they provide
Associations among nutrient concentration, silage fermentation products, in vivo organic matter digestibility, rumen fermentation and in vitro methane yield in 78 grass silages
Grass-clover silage constitutes a large part of ruminant diets in Northern and Western Europe, but the impact of silage quality on methane (CH4) production is largely unknown. This study was conducted to identify the quality attributes of grass silage associated with variation in CH4 yield. We expected that silage nutrient concentrations and silage fermentation products would affect CH4 yield, and that these factors could be used to predict the methanogenic potential of the si-lages. Round bales (n = 78) of grass and grass-clover silage from 37 farms in Norway were sampled, incubated, and screened for in vitro CH4 yield, i.e. CH4 production expressed on the basis of incubated organic matter (CH4-OM) and digestible OM (CH4-dOM) using sheep. Concentration of indigestible neutral detergent fiber (iNDF) was quantified using the in situ technique. The data were subjected to correlation and principal component analyses. Stepwise multiple regression was used to model methanogenic potential of silages. Among all investigated silage composition variables, neutral detergent fiber (aNDFom) and water-soluble carbohydrate (WSC) concentra-tions obtained the greatest correlations to CH4-OM (r =-0.63 and r = 0.57, respectively, P < 0.001), while concentration of iNDF negatively correlated with CH4-OM (r =-0.48, P < 0.001). In vivo organic matter digestibility (OMD) and concentration of ammonia-N (NH3-N) in silages were also correlated to CH4-OM (r = 0.44 and r =-0.32, P < 0.001 and P < 0.01, respectively). The stepwise regression using CH4-OM as response variable included aNDFom, WSC, iNDF, silage propionic acid and pH in descending order. The stepwise regression using CH4-dOM as response variable included WSC, aNDFom and iNDF in descending order. Among in vitro rumen short chain fatty acids (SCFA), molar proportion of butyrate was the most prominent in increasing CH4-OM and CH4-dOM (r = 0.23 and r = 0.36, P < 0.05 and P < 0.01, respectively), while molar proportion of propionate was the most prominent SCFA in reducing CH4-OM and CH4-dOM (r =-0.23 and r =-0.26, respectively, P < 0.05). Regression models that account for silage quality attributes can be used to predict CH4 yield from silages with a coefficient of determination (R-2) between 0.33 (CH4-dOM) and 0.65 (CH4-OM). In conclusion, concentration of WSC increased in vitro CH4-OM and CH4-dOM, while concentration of aNDFom and iNDF decreased CH4-OM and CH4-dOM in grass silages
- …