70 research outputs found

    Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland

    Get PDF
    This is the final version of the article. Available from EGU via the DOI in this record.Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lakes, suggesting efficient transfer of meltwater from the supraglacial to subglacial hydrological systems. Although considerable effort is currently being directed towards improved modelling of the controlling surface and basal processes, modelling the temporal and spatial evolution of the transfer of melt to the bed has received less attention. Here we present the results of spatially distributed modelling for prediction of moulins and lake drainages on the Leverett Glacier in Southwest Greenland. The model is run for the 2009 and 2010 ablation seasons, and for future increased melt scenarios. The temporal pattern of modelled lake drainages are qualitatively comparable with those documented from analyses of repeat satellite imagery. The modelled timings and locations of delivery of meltwater to the bed also match well with observed temporal and spatial patterns of ice surface speed-ups. This is particularly true for the lower catchment ( < 1000 m a.s.l.) where both the model and observations indicate that the development of moulins is the main mechanism for the transfer of surface meltwater to the bed. At higher elevations (e.g. 1250-1500 m a.s.l.) the development and drainage of supraglacial lakes becomes increasingly important. At these higher elevations, the delay between modelled melt generation and subsequent delivery of melt to the bed matches the observ ed delay between the peak air temperatures and subsequent velocity speed-ups, while the instantaneous transfer of melt to the bed in a control simulation does not. Although both moulins and lake drainages are predicted to increase in number for future warmer climate scenarios, the lake drainages play an increasingly important role in both expanding the area over which melt accesses the bed and in enabling a greater proportion of surface melt to reach the bed.We acknowledge the College of Physical Sciences, University of Aberdeen, the Leverhulme Trust through a Study Abroad Studentship and the Swedish Radiation Safety Authority, for funding awarded to C. Clason. Data collection was supported by the UK Natural Environment Research Council (through a studentship to I. Bartholomew and grants to P. Nienow and D. Mair) and the Edinburgh University Moss Centenary Scholarship (I. Bartholomew)

    Persistent acceleration in global sea-level rise since the 1960s

    Get PDF
    Previous studies reconstructed twentieth-century global mean sea level (GMSL) from sparse tide-gauge records to understand whether the recent high rates obtained from satellite altimetry are part of a longer-term acceleration. However, these analyses used techniques that can only accurately capture either the trend or the variability in GMSL, but not both. Here we present an improved hybrid sea-level reconstruction during 1900–2015 that combines previous techniques at time scales where they perform best. We find a persistent acceleration in GMSL since the 1960s and demonstrate that this is largely (~76%) associated with sea-level changes in the Indo-Pacific and South Atlantic. We show that the initiation of the acceleration in the 1960s is tightly linked to an intensification and a basin-scale equatorward shift of Southern Hemispheric westerlies, leading to increased ocean heat uptake, and hence greater rates of GMSL rise, through changes in the circulation of the Southern Ocean

    A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya

    Get PDF
    On 7 Feb 2021, a catastrophic mass flow descended the Ronti Gad, Rishiganga, and Dhauliganga valleys in Chamoli, Uttarakhand, India, causing widespread devastation and severely damaging two hydropower projects. Over 200 people were killed or are missing. Our analysis of satellite imagery, seismic records, numerical model results, and eyewitness videos reveals that ~27x106 m3 of rock and glacier ice collapsed from the steep north face of Ronti Peak. The rock and ice avalanche rapidly transformed into an extraordinarily large and mobile debris flow that transported boulders &gt;20 m in diameter, and scoured the valley walls up to 220 m above the valley floor. The intersection of the hazard cascade with downvalley infrastructure resulted in a disaster, which highlights key questions about adequate monitoring and sustainable development in the Himalaya as well as other remote, high-mountain environments

    Holocene morphodynamics in the Ugii Nuur basin, Mongolia : insights from a sediment profile and 1D electrical resistivity tomography

    No full text
    Sediment profile analysis and electrical resistivity tomography were applied in the Ugii Nuur basin, central Mongolia, in order to gain insight into the sedimentary architecture of valley fillings. It is shown that important constituents in the near surface ground are aeolian fines. Coarse grainsizes were predominantly deposited during the Late Pleistocene and the beginning of the Holocene indicating local dune activity and arid conditions. Since the Early to Mid Holocene a larger proportion of silt suggests an increase in mineral dust deposition. In combination with soil formation this points at dust trapping by a denser vegetation cover that reflects more humid conditions in the Ugii Nuur basin. Yet, 1D electrical resistivity tomography (VES) shows that Holocene deposits represent only a minor part of the thick valley fillings. Hence, it is assumed that there main extent has been established during the Pleistocene

    Meteorological causes of Harmattan dust in West Africa

    No full text
    We investigated the temporal dynamics of dust entrainment in the Bodélé Depression, Central Sahara, to better understand the intra-annual variability of aerosol emission in the world's largest dust source. The linkages between dust entrainment and large-scale meteorological factors were examined by correlating several meteorological variables in the Mediterranean and Africa north of the equator with the aerosol concentrations in the Bodélé Depression separately for winter and summer. The methodological tools applied are NCEP/NCAR reanalysis data and the aerosol index of the Total Ozone Mapping Spectrometer (TOMS-AI), available for 15 years from 1978 to 1993. We found that dust mobilisation during the Harmattan season is highly dependent on air pressure variability in the Mediterranean area. High pressure to the north of the Bodélé intensifies the NE trade winds, leading to an increased entrainment of dust in the Bodélé Depression. In summer, dust mobilization cannot be explained by the large scale meteorological conditions. This highlights the importance of local to regional wind systems linked to the northernmost position of the intertropical convection zone (ITCZ) during this time

    Linking spatial patterns of soil organic carbon to topography : a case study from south-eastern Spain

    No full text
    A key uncertainty in our understanding of the global carbon cycle is the lateral movement of carbon through the terrestrial system. Soils are the major storage of carbon in the terrestrial biosphere and the inventory of soil organic carbon (SOC) is required for greenhouse gas inventories and carbon mitigation projects. The aim of this study is to characterize spatial patterns of the concentrations of topsoil total organic carbon (TOC) in a semi-arid Mediterranean area in south-eastern Spain and to assess their relationship to topography. We adopt a remote sensing based approach for the spectral determination and quantification of TOC with a complete coverage of bare soil surfaces. Digital terrain analysis and geostatistical techniques are applied to analyze the spatial patterns of TOC at different spatial scales. We show that accumulation of topsoil SOC is dependent on topographic position at the landscape scale with highest values found in valley bottoms. At the hill-slope scale, differences among terrain classes exist regarding the topographic controls on SOC. While positive correlation between the topographic wetness index (TWI) and TOC can be observed on steep slopes, that correlation is not significant on wide pediments. Small scale spatial variability is large on ridges, steep slopes and valley bottoms, while SOC distribution on pediments is relatively homogeneous. These differences are most likely governed by the presence of vegetation patches and variable runoff and sediment transport rates among the terrain classes. The successful application of hyperspectral remote sensing for the spatial estimation of SOC concentrations suggests that it is a promising technique to advance SOC inventories in semi-arid and arid regions

    Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques

    No full text
    The analysis of longitudinal river profiles is an important tool for studying landscape evolution. However, characterizing river profiles based on digital elevation models (DEMs) suffers from errors and artifacts that particularly prevail along valley bottoms. The aim of this study is to characterize uncertainties that arise from the analysis of river profiles derived from different, near-globally available DEMs. We devised new algorithms – quantile carving and the CRS algorithm – that rely on quantile regression to enable hydrological correction and the uncertainty quantification of river profiles. We find that globally available DEMs commonly overestimate river elevations in steep topography. The distributions of elevation errors become increasingly wider and right skewed if adjacent hillslope gradients are steep. Our analysis indicates that the AW3D DEM has the highest precision and lowest bias for the analysis of river profiles in mountainous topography. The new 12 m resolution TanDEM-X DEM has a very low precision, most likely due to the combined effect of steep valley walls and the presence of water surfaces in valley bottoms. Compared to the conventional approaches of carving and filling, we find that our new approach is able to reduce the elevation bias and errors in longitudinal river profiles

    TopoToolbox : a set of Matlab functions for topographic analysis

    No full text
    TopoToolbox contains a set of Matlab functions that provide utilities for relief analysis in a non-Geographical Information System (GIS) environment. The tools have been developed to support the work flow in combined spatial and non-spatial numerical analysis. They offer flexible and user-friendly software for hydrological and geomorphological research that involves digital elevation model analysis and focuses on material fluxes and spatial variability of water, sediment, chemicals and nutrients. The objective of this paper is to give an introduction to the linear algebraic concept behind the software that employs sparse matrix computations for digital elevation model analysis. Moreover, we outline the functionality of the toolbox. The source codes are freely available in Matlab language on the authors' webpage (physiogeo.unibas.ch/topotoolbox)
    • …
    corecore