70 research outputs found

    High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from L-Phenylalanine via Linear and Divergent Enzymatic Cascades

    Get PDF
    [Image: see text] Enantiomerically pure 1,2-amino alcohols are important compounds due to their biological activities and wide applications in chemical synthesis. In this work, we present two multienzyme pathways for the conversion of l-phenylalanine into either 2-phenylglycinol or phenylethanolamine in the enantiomerically pure form. Both pathways start with the two-pot sequential four-step conversion of l-phenylalanine into styrene via subsequent deamination, decarboxylation, enantioselective epoxidation, and enantioselective hydrolysis. For instance, after optimization, the multienzyme process could convert 507 mg of l-phenylalanine into (R)-1-phenyl-1,2-diol in an overall isolated yield of 75% and >99% ee. The opposite enantiomer, (S)-1-phenyl-1,2-diol, was also obtained in a 70% yield and 98–99% ee following the same approach. At this stage, two divergent routes were developed to convert the chiral diols into either 2-phenylglycinol or phenylethanolamine. The former route consisted of a one-pot concurrent interconnected two-step cascade in which the diol intermediate was oxidized to 2-hydroxy-acetophenone by an alcohol dehydrogenase and then aminated by a transaminase to give enantiomerically pure 2-phenylglycinol. Notably, the addition of an alanine dehydrogenase enabled the connection of the two steps and made the overall process redox-self-sufficient. Thus, (S)-phenylglycinol was isolated in an 81% yield and >99.4% ee starting from ca. 100 mg of the diol intermediate. The second route consisted of a one-pot concurrent two-step cascade in which the oxidative and reductive steps were not interconnected. In this case, the diol intermediate was oxidized to either (S)- or (R)-2-hydroxy-2-phenylacetaldehyde by an alcohol oxidase and then aminated by an amine dehydrogenase to give the enantiomerically pure phenylethanolamine. The addition of a formate dehydrogenase and sodium formate was required to provide the reducing equivalents for the reductive amination step. Thus, (R)-phenylethanolamine was isolated in a 92% yield and >99.9% ee starting from ca. 100 mg of the diol intermediate. In summary, l-phenylalanine was converted into enantiomerically pure 2-phenylglycinol and phenylethanolamine in overall yields of 61% and 69%, respectively. This work exemplifies how linear and divergent enzyme cascades can enable the synthesis of high-value chiral molecules such as amino alcohols from a renewable material such as l-phenylalanine with high atom economy and improved sustainability

    Управление рисками профессиональных заболеваний на газотранспортном предприятии

    Get PDF
    Объектом исследования является система управления рисками профессиональных заболеваний на газотранспортном предприятии. В процессе исследования проводился анализ производственных процессов, оценка факторов рабочей среды и трудового процесса. В результате исследования были выявлены факторы трудового процесса, для расчета степени риска профессиональных заболеваний.The object of the study is the occupational disease risk management system at the gas transport enterprise. The study included an analysis of production processes, working environment and work process factors. As a result of the study, factors of the work process were identified to calculate the risk of occupational diseases

    Turning a Killing Mechanism into an Adhesion and Antifouling Advantage

    Get PDF
    Mild and universal methods to introduce functionality in polymeric surfaces remain a challenge. Herein, a bacterial killing mechanism based on amphiphilic antimicrobial peptides is turned into an adhesion advantage. Surface activity (surfactant) of the antimicrobial liquid chromatography peak I (LCI) peptide is exploited to achieve irreversible binding of a protein–polymer hybrid to surfaces via physical interactions. The protein–polymer hybrid consists of two blocks, a surface‐affine block (LCI) and a functional block to prevent protein fouling on surfaces by grafting antifouling polymers via single electron transfer‐living radical polymerization (SET‐LRP). The mild conditions of SET‐LRP of N‐2‐hydroxy propyl methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) preserve the secondary structure of the fusion protein. Adsorption kinetics and grafting densities are assessed using surface plasmon resonance and ellipsometry on model gold surfaces, while the functionalization of a range of artificial and natural surfaces, including teeth, is directly observed by confocal microscopy. Notably, the fusion protein modified with poly(HPMA) completely prevents the fouling from human blood plasma and thereby exhibits a resistance to protein fouling that is comparable to the best grafted‐from polymer brushes. This, combined with their simple application on a large variety of materials, highlights the universal and scalable character of the antifouling concept

    Photobiocatalytic chemistry of oxidoreductases using water as the electron donor

    Full text link
    [EN] To date, water has been poorly studied as the sacrificial electron donor for biocatalytic redox reactions using isolated enzymes. Here we demonstrate that water can also be turned into a sacrificial electron donor to promote biocatalytic redox reactions. The thermodynamic driving force required for water oxidation is obtained from UV and visible light by means of simple titanium dioxide-based photocatalysts. The electrons liberated in this process are delivered to an oxidoreductase by simple flavin redox mediators. Overall, the feasibility of photobiocatalytic, water-driven bioredox reactions is demonstrated.Financial support from the Spanish Science and Innovation Ministry (Consolider Ingenio 2010-MULTICAT CSD 2009-00050, Subprograma de apoyo a Centros y Universidades de Excelencia Severo Ochoa SEV 2012 0267). M. M. acknowledges the Spanish Science and Innovation Ministry for a 'Juan de la Cierva' postdoctoral contract. S. G. acknowledges the European Union Marie Curie Programme (ITN 'Biotrains', Grant Agreement No. 238531).Mifsud Grau, M.; Gargiulo, S.; Iborra Chornet, S.; Arends, IWCE.; Hollmann, F.; Corma Canós, A. (2014). Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications. 5:1-6. https://doi.org/10.1038/ncomms4145S165Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).Breuer, M. et al. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. 43, 788–824 (2004).Pollard, D. J. & Woodley, J. M. Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol. 25, 66–73 (2007).Ran, N., Zhao, L., Chen, Z. & Tao, J. Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green. Chem. 10, 361–372 (2008).Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).Schmid, A., Hollmann, F., Park, J. B. & Bühler, B. The use of enzymes in the chemical industry in Europe. Curr. Opin. Biotechnol. 13, 359–366 (2002).Schoemaker, H. E., Mink, D. & Wubbolts, M. G. Dispelling the myths-biocatalysis in industrial synthesis. Science 299, 1694–1697 (2003).Turner, N. J. & O’Reilly, E. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9, 285–288 (2013).Drauz K., Gröger H., May O. (eds)Enzyme Catalysis in Organic Synthesis Wiley-VCH: Weinheim, (2012).Weckbecker, A., Gröger, H. & Hummel, W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. inBiosystems Engineering I: Creating Superior Biocatalysts pp195–242Springer: Berlin, (2010).Van der Donk, W. A. & Zhao, H. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14, 421–426 (2003).Wu, H. et al. Methods for the regeneration of nicotinamide coenzymes. Green. Chem. 15, 1773–1789 (2013).Rodriguez, C., Lavandera, I. & Gotor, V. Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes. Curr. Org. Chem. 16, 2525–2541 (2012).Reipa, V., Mayhew, M. P. & Vilker, V. L. A direct electrode-driven P450 cycle for biocatalysis. Proc. Natl Acad. Sci. USA 94, 13554–13558 (1997).Bernard, J., van Heerden, E., Arends, I. W. C. E., Opperman, D. J. & Hollmann, F. Chemoenzymatic reduction of conjugated C=C double bonds. Chem. Cat. Chem. 4, 196–199 (2012).Hollmann, F., Arends, I. W. C. E. & Bühler, K. Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. Chem. Cat. Chem. 2, 762–782 (2010).Hollmann, F., Hofstetter, K., Habicher, T., Hauer, B. & Schmid, A. Direct electrochemical regeneration of monooxygenase subunits for biocatalytic asymmetric epoxidation. J. Am. Chem. Soc. 127, 6540–6541 (2005).Hollmann, F., Lin, P.-C., Witholt, B. & Schmid, A. Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a fad-dependent monooxygenase for catalysis. J. Am. Chem. Soc. 125, 8209–8217 (2003).Hollmann, F. & Schmid, A. Towards [Cp*Rh(bpy)(H2O)]2+-promoted P450 catalysis: direct regeneration of CytC. J. Inorg. Biochem. 103, 313–315 (2009).Hollmann, F., Taglieber, A., Schulz, F. & Reetz, M. T. A light-driven stereoselective biocatalytic oxidation. Angew. Chem. Int. Ed. 46, 2903–2906 (2007).Mifsud Grau, M. et al. Photoenzymatic reduction of C=C double bonds. Adv. Synth. Catal. 351, 3279–3286 (2009).Ruinatscha, R., Dusny, C., Buehler, K. & Schmid, A. Productive asymmetric styrene epoxidation based on a next generation electroenzymatic methodology. Adv. Synth. Catal. 351, 2505–2515 (2009).Schwaneberg, U., Appel, D., Schmitt, J. & Schmid, R. D. P450 in biotechnology: zinc driven ω-hydroxylation of p-nitrophenoxydodecanoic acid using P450 BM-3 F87A as a catalyst. J. Biotechnol. 84, 249–257 (2000).Taglieber, A., Schulz, F., Hollmann, F., Rusek, M. & Reetz, M. T. Light-Driven Biocatalytic Oxidation and Reduction Reactions: Scope and Limitations. Chem. Bio. Chem. 9, 565–572 (2008).Udit, A. K., Arnold, F. H. & Gray, H. B. Cobaltocene-mediated catalytic monooxygenation using holo and heme domain cytochrome P450 BM3. J. Inorg. Biochem. 98, 1547–1550 (2004).Udit, A. K., Hill, M. G., Bittner, V. G., Arnold, F. H. & Gray, H. B. Reduction of dioxygen catalyzed by pyrene-wired heme domain cytochrome p450 bm3 electrodes. J. Am. Chem. Soc. 126, 10218–10219 (2004).Unversucht, S., Hollmann, F., Schmid, A. & van Pée, K.-H. FADH2-Dependence of Tryptophan 7-Halogenase. Adv. Synth. Catal. 347, 1163–1167 (2005).Zilly, F. E., Taglieber, A., Schulz, F., Hollmann, F. & Reetz, M. T. Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations. Chem. Commun. 7152–7154 (2009).Yehezkeli, O. et al. Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3, 742 (2012).Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012).Dau, H., Zaharieva, I. & Haumann, M. Recent developments in research on water oxidation by photosystem II. Curr. Opin. Chem. Biol. 16, 3–10 (2012).Qu, Y. & Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013).Takanabe, K. & Domen, K. Preparation of inorganic photocatalytic materials for overall water splitting. Chem. Cat. Chem. 4, 1485–1497 (2012).Wee, T.-L. et al. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 133, 16742–16745 (2011).Cargnello, M. & Fornasiero, P. Photocatalysis by nanostructured TiO2 based semiconductors. inHandbook of Green Chemistry, Green Nanoscience (eds Selva M., Perosa A. Wiley-VCH: Weinheim, (2010).Liu, S. Q. & Chen, A. C. Coadsorption of horseradish peroxidase with thionine on TiO2: Nanotubes for biosensing. Langmuir 21, 8409–8413 (2005).Zhang, Y., He, P. L. & Hu, N. F. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 49, 1981–1988 (2004).Chen, D., Zhang, H., Li, X. & Li, J. H. Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Anal. Chem. 82, 2253–2261 (2010).Gomes Silva, C. U., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2010).Opperman, D. J., Piater, L. A. & van Heerden, E. A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J. Bacteriol. 190, 3076–3082 (2008).Opperman, D. J. et al. Crystal structure of a thermostable old yellow enzyme from Thermus scotoductus SA-01. Biochem. Biophys. Res. Commun. 393, 426–431 (2010).Choi, S. H. et al. The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature. J. Mol. Catal. A: Chem. 304, 166–173 (2009)

    High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from L-Phenylalanine via Linear and Divergent Enzymatic Cascades

    No full text
    Enantiomerically pure 1,2-amino alcohols are important compounds due to their biological activities and wide applications in chemical synthesis. In this work, we present two multienzyme pathways for the conversion of l-phenylalanine into either 2-phenylglycinol or phenylethanolamine in the enantiomerically pure form. Both pathways start with the two-pot sequential four-step conversion of l-phenylalanine into styrene via subsequent deamination, decarboxylation, enantioselective epoxidation, and enantioselective hydrolysis. For instance, after optimization, the multienzyme process could convert 507 mg of l-phenylalanine into (R)-1-phenyl-1,2-diol in an overall isolated yield of 75% and >99% ee. The opposite enantiomer, (S)-1-phenyl-1,2-diol, was also obtained in a 70% yield and 98-99% ee following the same approach. At this stage, two divergent routes were developed to convert the chiral diols into either 2-phenylglycinol or phenylethanolamine. The former route consisted of a one-pot concurrent interconnected two-step cascade in which the diol intermediate was oxidized to 2-hydroxy-acetophenone by an alcohol dehydrogenase and then aminated by a transaminase to give enantiomerically pure 2-phenylglycinol. Notably, the addition of an alanine dehydrogenase enabled the connection of the two steps and made the overall process redox-self-sufficient. Thus, (S)-phenylglycinol was isolated in an 81% yield and >99.4% ee starting from ca. 100 mg of the diol intermediate. The second route consisted of a one-pot concurrent two-step cascade in which the oxidative and reductive steps were not interconnected. In this case, the diol intermediate was oxidized to either (S)- or (R)-2-hydroxy-2-phenylacetaldehyde by an alcohol oxidase and then aminated by an amine dehydrogenase to give the enantiomerically pure phenylethanolamine. The addition of a formate dehydrogenase and sodium formate was required to provide the reducing equivalents for the reductive amination step. Thus, (R)-phenylethanolamine was isolated in a 92% yield and >99.9% ee starting from ca. 100 mg of the diol intermediate. In summary, l-phenylalanine was converted into enantiomerically pure 2-phenylglycinol and phenylethanolamine in overall yields of 61% and 69%, respectively. This work exemplifies how linear and divergent enzyme cascades can enable the synthesis of high-value chiral molecules such as amino alcohols from a renewable material such as l-phenylalanine with high atom economy and improved sustainability

    Verfahren zur enzymatischen Umsetzung von Alkanen

    No full text
    Gröger H, Burda E, Schwaneberg U, Marienhagen J, Drauz K. Verfahren zur enzymatischen Umsetzung von Alkanen. 2010
    corecore