94 research outputs found

    Genomics and spatial surveillance of Chagas disease and American visceral leishmaniasis

    Get PDF
    The Trypanosomatidae are a family of parasitic protozoa that infect various animals and plants. Several species within the Trypanosoma and Leishmania genera also pose a major threat to human health. Among these are Trypanosoma cruzi and Leishmania infantum, aetiological agents of the highly debilitating and often deadly vector-borne zoonoses Chagas disease and American visceral leishmaniasis. Current treatment options are far from safe, only partially effective and rarely available in the impoverished regions of Latin America where these ‘neglected tropical diseases’ prevail. Wider-reaching, sustainable protection against T. cruzi and L. infantum might best be achieved by intercepting key routes of zoonotic transmission, but this prophylactic approach requires a better understanding of how these parasites disperse and evolve at various spatiotemporal scales. This dissertation addresses key questions around trypanosomatid parasite biology and spatial epidemiology based on high-resolution, geo-referenced DNA sequence datasets constructed from disease foci throughout Latin America: Which forms of genetic exchange occur in T. cruzi, and are exchange events frequent enough to significantly alter the distribution of important epidemiological traits? How do demographic histories, for example, the recent invasive expansion of L. infantum into the Americas, impact parasite population structure, and do structural changes pose a threat to public health? Can environmental variables predict parasite dispersal patterns at the landscape scale? Following the first chapter’s review of population genetic and genomic approaches in the study of trypanosomatid diseases in Latin America, Chapter 2 describes how reproductive polymorphism segregates T. cruzi populations in southern Ecuador. The study is the first to clearly demonstrate meiotic sex in this species, for decades thought to exchange genetic material only very rarely, and only by non-Mendelian means. T. cruzi subpopulations from the Ecuadorian study site exhibit all major hallmarks of sexual reproduction, including genome-wide Hardy-Weinberg allele frequencies, rapid decay of linkage disequilibrium with map distance and genealogies that fluctuate among chromosomes. The presence of sex promotes the transfer and transformation of genotypes underlying important epidemiological traits, posing great challenges to disease surveillance and the development of diagnostics and drugs. Chapter 3 demonstrates that mating events are also pivotal to L. infantum population structure in Brazil, where introduction bottlenecks have led to striking genetic discontinuities between sympatric strains. Genetic hybridization occurs genome-wide, including at a recently identified ‘miltefosine sensitivity locus’ that appears to be deleted from the majority of Brazilian L. infantum genomes. The study combines an array of genomic and phenotypic analyses to determine whether rapid population expansion or strong purifying selection has driven this prominent > 12 kb deletion to high abundance across Brazil. Results expose deletion size differences that covary with phylogenetic structure and suggest that deletion-carrying strains do not form a private monophyletic clade. These observations are inconsistent with the hypothesis that the deletion genotype rose to high prevalence simply as the result of a founder effect. Enzymatic assays show that loss of ecto-3’-nucleotidase gene function within the deleted locus is coupled to increased ecto-ATPase activity, raising the possibility that alternative metabolic strategies enhance L. infantum fitness in its introduced range. The study also uses demographic simulation modelling to determine whether L. infantum populations in the Americas have expanded from just one or multiple introduction events. Comparison of observed vs. simulated summary statistics using random forests suggests a single introduction from the Old World, but better spatial sampling coverage is required to rule out other demographic scenarios in a pattern-process modelling approach. Further sampling is also necessary to substantiate signs of convergent selection introduced above. Chapter 4 therefore develops a ‘genome-wide locus sequence typing’ (GLST) tool to summarize parasite genetic polymorphism at a fraction of genomic sequencing cost. Applied directly to the infection source (e.g., vector or host tissue), the method also avoids bias from cell purification and culturing steps typically involved prior to sequencing of trypanosomatid and other obligate parasite genomes. GLST scans genomic pilot data for hundreds of polymorphic sequence fragments whose thermodynamic properties permit simultaneous PCR amplification in a single reaction tube. For proof of principle, GLST is applied to metagenomic DNA extracts from various Chagas disease vector species collected in Colombia, Venezuela, and Ecuador. Epimastigote DNA from several T. cruzi reference clones is also analyzed. The method distinguishes 387 single-nucleotide polymorphisms (SNPs) in T. cruzi sub-lineage TcI and an additional 393 SNPs in non-TcI clones. Genetic distances calculated from these SNPs correlate with geographic distances among samples but also distinguish parasites from triatomines collected at common collection sites. The method thereby appears suitable for agent-based spatio-genetic (simulation) analyses left wanted by Chapter 3 – and further formulated in Chapter 5. The potential to survey parasite genetic diversity abundantly across landscapes compels deeper, more systematic exploration of how environmental variables influence the spread of disease. As environmental context is only marginally considered in the population genetic analyses of Chapters 2 – 4, Chapter 5 proposes a new, spatially explicit modelling framework to predict vector-borne parasite gene flow through heterogeneous environment. In this framework, remotely sensed environmental raster values are re-coded and merged into a composite ‘resistance surface’ that summarizes hypothesized effects of landscape features on parasite transmission among vectors and hosts. Parasite population genetic differentiation is then simulated on this surface and fitted to observed diversity patterns in order to evaluate original hypotheses on how environmental variables modulate parasite gene flow. The chapter thereby makes a maiden step from standard population genetic to ‘landscape genomic’ approaches in understanding the ecology and evolution of vector-borne disease. In summary, this dissertation first demonstrates the power of population genetics and genomics to understand fundamental biological properties of important protist parasites, then identifies areas where analytical tools are missing and creates new technical and conceptual frameworks to help fill these gaps. The general discussion (Chapter 6) also outlines several follow-up projects on the key finding of meiotic genetic signatures in T. cruzi. Exploiting recently developed T. cruzi genome-editing systems for the detection of meiotic gene expression and heterozygosis will help understand why and in which life cycle stage some parasite populations use sex and others do not. Long-read sequencing of parental and recombinant genomes will help understand the extent to which sex is diversifying T. cruzi phenotypes, especially virulence and drug resistance properties conferred by surface molecules with repetitive genetic bases intractable to short-read analysis. Chapter 6 also provides follow-up plans for all other research chapters. Emphasis is placed on advancing the complementarity, transferability and public health benefit of the many different methods and concepts employed in this work

    Small subunit ribosomal metabarcoding reveals extraordinary trypanosomatid diversity in Brazilian bats

    Get PDF
    Background: Bats are a highly successful, globally dispersed order of mammals that occupy a wide array of ecological niches. They are also intensely parasitized and implicated in multiple viral, bacterial and parasitic zoonoses. Trypanosomes are thought to be especially abundant and diverse in bats. In this study, we used 18S ribosomal RNA metabarcoding to probe bat trypanosome diversity in unprecedented detail. Methodology/Principal Findings: Total DNA was extracted from the blood of 90 bat individuals (17 species) captured along Atlantic Forest fragments of Espírito Santo state, southeast Brazil. 18S ribosomal RNA was amplified by standard and/or nested PCR, then deep sequenced to recover and identify Operational Taxonomic Units (OTUs) for phylogenetic analysis. Blood samples from 34 bat individuals (13 species) tested positive for infection by 18S rRNA amplification. Amplicon sequences clustered to 14 OTUs, of which five were identified as Trypanosoma cruzi I, T. cruzi III/V, Trypanosoma cruzi marinkellei, Trypanosoma rangeli, and Trypanosoma dionisii, and seven were identified as novel genotypes monophyletic to basal T. cruzi clade types of the New World. Another OTU was identified as a trypanosome like those found in reptiles. Surprisingly, the remaining OTU was identified as Bodo saltans–closest non-parasitic relative of the trypanosomatid order. While three blood samples featured just one OTU (T. dionisii), all others resolved as mixed infections of up to eight OTUs. Conclusions/Significance: This study demonstrates the utility of next-generation barcoding methods to screen parasite diversity in mammalian reservoir hosts. We exposed high rates of local bat parasitism by multiple trypanosome species, some known to cause fatal human disease, others non-pathogenic, novel or yet little understood. Our results highlight bats as a long-standing nexus among host-parasite interactions of multiple niches, sustained in part by opportunistic and incidental infections of consequence to evolutionary theory as much as to public health. Author summary: Bats make up a mega-diverse, intensely parasitized order of volant mammals whose unique behavioural and physiological adaptations promote infection by a vast array of microorganisms. Trypanosomes stand out as ancient protozoan parasites of bats. As cryptic morphology, low parasitaemia and selective growth in culture have recurrently biased survey, we used 18S ribosomal RNA metabarcoding to resolve bat trypanosomatid diversity in Atlantic Forest fragments of southeast Brazil. Next to several unknown species, our deep sequence-based detection and assignment protocol recognized multiple known human-pathogenic trypanosomes, another linked to reptile hosts as well as a non-parasitic kinetoplastid in the blood of various phyllostomid bats. The striking permissivity exposed here, in a region where bat trypanosomes recently featured in a fatal case of Chagas disease, compels further research on bats’ role in the dispersal and spill-over of various microorganisms among humans and wildlife

    Entanglement and Extreme Spin Squeezing for a Fluctuating Number of Indistinguishable Particles

    Full text link
    We extend the criteria for kk-particle entanglement from the spin squeezing parameter presented in [A.S. S{\o}rensen and K. M{\o}lmer, Phys. Rev. Lett. {\bf 86}, 4431 (2001)] to systems with a fluctating number of particles. We also discuss how other spin squeezing inequalities can be generalized to this situation. Further, we give an operational meaning to the bounds for cases where the individual particles cannot be addressed. As a by-product, this allows us to show that in spin squeezing experiments with cold gases the particles are typically distinguishable in practise. Our results justify the application of the S{\o}rensen-M{\o}lmer bounds in recent experiments on spin squeezing in Bose-Einstein condensates

    Bacterial translocation occurs early in cirrhosis and triggers a selective infammatory response

    Get PDF
    Background: Experimental data suggest that bacterial translocation (BT) promotes systemic inflammation, portal hypertension, and circulatory dysfunction in advanced chronic liver disease (ACLD). Methods: Patients with ACLD undergoing hepatic venous pressure gradient (HVPG) measurement and absence of acute decompensation or infections were included (n = 249). Serum biomarkers of BT (lipopolysaccharide [LPS], lipoteichoic acid [LTA], bacterial DNA [bactDNA]), systemic inflammation and markers of circulatory dysfunction were assessed. T-cell subsets in intestinal biopsies (n = 7 ACLD, n = 4 controls) were analyzed by flow cytometry. Results: Patients had a median HVPG of 18 (12-21) mmHg and 56% had decompensated ACLD. LPS (0.04 [0.02-0.06] vs. 0.64 [0.30-1.06] EU/mL), LTA (4.53 [3.58-5.97] vs. 43.2 [23.2-109] pg/mL), and detection of bactDNA (≄ 5 pg/mL; 5% vs. 41%) were markedly higher in patients with ACLD than healthy controls (n = 40; p < 0.001) but were similar between different clinical stages of compensated and decompensated ACLD and displayed no meaningful correlation with HVPG and systemic hemodynamics. TNF-α and IL-10 correlated with LPS (Spearman's rs = 0.523, p < 0.001/rs = 0.143, p = 0.024) but not with LTA. Presence of bactDNA was associated with higher LPS (0.54 [0.28-0.95] vs. 0.88 [0.32-1.31] EU/mL, p = 0.001) and TNF-α (15.3 [6.31-28.1] vs. 20.9 [13.8-32.9] pg/mL). Patients with ACLD exhibited a decreased CD4:CD8-ratio and increased TH1-cells in the intestinal mucosa as compared to controls. During a median FU of 14.7 (8.20-26.5) months, bacterial antigens did not predict decompensation or liver-related death (in contrast to HVPG, IL-6, and MAP) as well as infections at 24 months. Conclusion: BT occurs already in early ACLD stages and triggers a systemic inflammatory response via TNF-α and IL-10. Interestingly, BT markers showed no clear correlation with portal hypertension and circulatory dysfunction in patients with stable ACLD

    Intraperitoneal Activation of Coagulation and Fibrinolysis in Patients with Cirrhosis and Ascites

    Get PDF
    Development of ascites is the most common form of decompensation of cirrhosis. We aimed to investigate the coagulation system in ascitic fluid and plasma of patients with cirrhosis. We determined coagulation parameters and performed clotting and fibrinolysis experiments in ascitic fluid and plasma of thoroughly characterized patients with cirrhosis and ascites ( n  = 25) and in plasma of patients with cirrhosis but without ascites ( n  = 25), matched for severity of portal hypertension. We also investigated plasma D-dimer levels in an independent cohort of patients ( n  = 317) with clinically significant portal hypertension (HVPG ≄ 10 mmHg), grouped according to ascites severity. Ascitic fluid was procoagulant in a clotting assay. The procoagulant potential of ascitic fluid was abolished by depletion of extracellular vesicles from ascitic fluid by filtration or by addition of a tissue factor-neutralizing antibody. Compared with plasma, extracellular vesicle-associated tissue factor activity was high in ascitic fluid, while activities of other coagulation factors were low. The extracellular vesicle-depleted fraction of ascitic fluid induced fibrinolysis, which was prevented by aprotinin, indicating the presence of plasmin in ascitic fluid. Plasma peak thrombin generation and parameters reflecting fibrinolysis were independently associated with the presence of ascites. Finally, plasma D-dimer levels were independently linked to ascites severity in our second cohort comprising 317 patients. In conclusion, coagulation and fibrinolysis become activated in ascites of patients with cirrhosis. While tissue factor-exposing extracellular vesicles in ascitic fluid seem unable to pass the peritoneal membrane, fibrinolytic enzymes get activated in ascitic fluid and may re-enter the systemic circulation and induce systemic fibrinolysis

    Trans-Atlantic spill over: deconstructing the ecological adaptation of Leishmania infantum in the Americas

    Get PDF
    Pathogen fitness landscapes change when transmission cycles establish in non-native environments or spill over into new vectors and hosts. The introduction of Leishmania infantum in the Americas into the Neotropics during European colonization represents a unique case study to investigate the mechanisms of ecological adaptation of this important parasite. Defining the evolutionary trajectories that drive L. infantum fitness in this new environment are of great public health importance as they will allow unique insight into pathways of host/pathogen co-evolution and their consequences for region-specific changes in disease manifestation. This review summarizes current knowledge on L. infantum genetic and phenotypic diversity in the Americas and its possible role in the unique epidemiology of visceral leishmaniasis (VL) in the New World. We highlight the importance of appreciating adaptive molecular mechanisms in L. infantum to understand the parasites’ successful establishment on the continent

    Changes in Hepatic Venous Pressure Gradient Predict Hepatic Decompensation in Patients Who Achieved Sustained Virologic Response to Interferon-Free Therapy

    Get PDF
    BaCKgRoUND aND aIMS: Sustained virologic response (SVR) to interferon (IFN)-free therapies ameliorates portal hypertension (PH); however, it remains unclear whether a decrease in hepatic venous pressure gradient (HVPG) after cure of hepatitis C translates into a clinical benefit. We as- sessed the impact of pretreatment HVPG, changes in HVPG, and posttreatment HVPG on the development of hepatic decompensation in patients with PH who achieved SVR to IFN-free therapy. Moreover, we evaluated transient elastogra- phy (TE) and von Willebrand factor to platelet count ratio (VITRO) as noninvasive methods for monitoring the evolu- tion of PH. appRoaCH aND ReSUltS: The study comprised 90 patients with HVPG ≄ 6 mm Hg who underwent paired HVPG, TE, and VITRO assessments before (baseline [BL]) and after (follow-up [FU]) IFN-free therapy. FU HVPG but not BL HVPG predicted hepatic decompensation (per mm Hg, hazard ratio, 1.18; 95% confidence interval, 1.08- 1.28; P < 0.001). Patients with BL HVPG ≀ 9 mm Hg or patients who resolved clinically significant PH (CSPH) were protected from hepatic decompensation. In patients with CSPH, an HVPG decrease ≄ 10% was similarly protective (36 months, 2.5% vs. 40.5%; P < 0.001) but was observed in a substantially higher proportion of patients (60% vs. 24%; P < 0.001). Importantly, the performance of noninva- sive methods such as TE/VITRO for diagnosing an HVPG reduction ≄ 10% was inadequate for clinical use (area under the receiver operating characteristic curve [AUROC], < 0.8), emphasizing the need for HVPG measurements. However, TE/VITRO were able to rule in or rule out FU CSPH (AUROC, 0.86-0.92) in most patients, especially if assessed in a sequential manner. CoNClUSIoNS: Reassessment of HVPG after SVR im- proved prognostication in patients with pretreatment CSPH. An “immediate” HVPG decrease ≄ 10% was observed in the majority of these patients and was associated with a clinical benefit, as it prevented hepatic decompensation. These results support the use of HVPG as a surrogate endpoint for inter- ventions that lower portal pressure by decreasing intrahepatic resistance

    Culture-free genome-wide locus sequence typing (GLST) provides new perspectives on Trypanosoma cruzi dispersal and infection complexity.

    Get PDF
    Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obligate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor settings where infectious diseases prevail. This study proposes a simple, cost-effective 'genome-wide locus sequence typing' (GLST) tool based on massive parallel amplification of information hotspots throughout the target pathogen genome. The multiplexed polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and subsequent agarose gel-based clean-up and barcoding completes library preparation at under 4 USD per sample. Our study generates a flexible GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-target GLST panel to direct, culture-free metagenomic extracts from triatomine vectors containing a minimum of 3.69 pg/ÎŒl T. cruzi DNA and further elaborate on method performance by sequencing GLST libraries from T. cruzi reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites infecting sympatric vectors and detect correlations between genetic and geographic distances at regional (< 150 km) as well as continental scales. The markers also clearly separate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections within TcI. We discuss the advantages, limitations and prospects of our method across a spectrum of epidemiological research

    Evolutionary consequences of feedbacks between within-host competition and disease control

    Get PDF
    Lay Summary: Competition often occurs among diverse parasites within a single host, but control efforts could change its strength. We examined how the interplay between competition and control could shape the evolution of parasite traits like drug resistance and disease severity
    • 

    corecore