2

Universit
5 of Glasgowy

Schwabl, Philipp (2020) Genomics and spatial surveillance of Chagas
disease and American visceral leishmaniasis. PhD thesis.

http://theses.gla.ac.uk/81448/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/
research-enlighten@glasgow.ac.uk



http://theses.gla.ac.uk/81448/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Genomics and spatial surveillance of

Chagas disease and American visceral leishmaniasis

Philipp Schwabl

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

Institute of Biodiversity, Animal Health & Comparative Medicine
College of Medical, Veterinary & Life Sciences

University of Glasgow

March 2020

© Philipp Schwabl



Abstract

The Trypanosomatidae are a family of parasitic protozoa that infect various animals and
plants. Several species within the Trypanosoma and Leishmania genera also pose a major
threat to human health. Among these are Trypanosoma cruzi and Leishmania infantum,
aetiological agents of the highly debilitating and often deadly vector-borne zoonoses Chagas
disease and American visceral leishmaniasis. Current treatment options are far from safe, only
partially effective and rarely available in the impoverished regions of Latin America where
these ‘neglected tropical diseases’ prevail. Wider-reaching, sustainable protection against 7.
cruzi and L. infantum might best be achieved by intercepting key routes of zoonotic
transmission, but this prophylactic approach requires a better understanding of how these

parasites disperse and evolve at various spatiotemporal scales.

This dissertation addresses key questions around trypanosomatid parasite biology and spatial
epidemiology based on high-resolution, geo-referenced DNA sequence datasets constructed

from disease foci throughout Latin America:

Which forms of genetic exchange occur in 7. cruzi, and are exchange events frequent enough
to significantly alter the distribution of important epidemiological traits? How do
demographic histories, for example, the recent invasive expansion of L. infantum into the
Americas, impact parasite population structure, and do structural changes pose a threat to
public health? Can environmental variables predict parasite dispersal patterns at the landscape

scale?

Following the first chapter’s review of population genetic and genomic approaches in the
study of trypanosomatid diseases in Latin America, Chapter 2 describes how reproductive
polymorphism segregates 7. cruzi populations in southern Ecuador. The study is the first to
clearly demonstrate meiotic sex in this species, for decades thought to exchange genetic
material only very rarely, and only by non-Mendelian means. 7. cruzi subpopulations from
the Ecuadorian study site exhibit all major hallmarks of sexual reproduction, including
genome-wide Hardy-Weinberg allele frequencies, rapid decay of linkage disequilibrium with
map distance and genealogies that fluctuate among chromosomes. The presence of sex
promotes the transfer and transformation of genotypes underlying important epidemiological
traits, posing great challenges to disease surveillance and the development of diagnostics and

drugs.

Chapter 3 demonstrates that mating events are also pivotal to L. infantum population structure

in Brazil, where introduction bottlenecks have led to striking genetic discontinuities between



sympatric strains. Genetic hybridization occurs genome-wide, including at a recently
identified ‘miltefosine sensitivity locus’ that appears to be deleted from the majority of
Brazilian L. infantum genomes. The study combines an array of genomic and phenotypic
analyses to determine whether rapid population expansion or strong purifying selection has
driven this prominent > 12 kb deletion to high abundance across Brazil. Results expose
deletion size differences that covary with phylogenetic structure and suggest that deletion-
carrying strains do not form a private monophyletic clade. These observations are inconsistent
with the hypothesis that the deletion genotype rose to high prevalence simply as the result of
a founder effect. Enzymatic assays show that loss of ecto-3’-nucleotidase gene function within
the deleted locus is coupled to increased ecto-ATPase activity, raising the possibility that
alternative metabolic strategies enhance L. infantum fitness in its introduced range. The study
also uses demographic simulation modelling to determine whether L. infantum populations in
the Americas have expanded from just one or multiple introduction events. Comparison of
observed vs. simulated summary statistics using random forests suggests a single introduction
from the Old World, but better spatial sampling coverage is required to rule out other
demographic scenarios in a pattern-process modelling approach. Further sampling is also

necessary to substantiate signs of convergent selection introduced above.

Chapter 4 therefore develops a ‘genome-wide locus sequence typing’ (GLST) tool to
summarize parasite genetic polymorphism at a fraction of genomic sequencing cost. Applied
directly to the infection source (e.g., vector or host tissue), the method also avoids bias from
cell purification and culturing steps typically involved prior to sequencing of trypanosomatid
and other obligate parasite genomes. GLST scans genomic pilot data for hundreds of
polymorphic sequence fragments whose thermodynamic properties permit simultaneous PCR
amplification in a single reaction tube. For proof of principle, GLST is applied to
metagenomic DNA extracts from various Chagas disease vector species collected in
Colombia, Venezuela, and Ecuador. Epimastigote DNA from several 7. cruzi reference clones
is also analyzed. The method distinguishes 387 single-nucleotide polymorphisms (SNPs) in
T. cruzi sub-lineage Tcl and an additional 393 SNPs in non-Tcl clones. Genetic distances
calculated from these SNPs correlate with geographic distances among samples but also
distinguish parasites from triatomines collected at common collection sites. The method
thereby appears suitable for agent-based spatio-genetic (simulation) analyses left wanted by

Chapter 3 — and further formulated in Chapter 5.

The potential to survey parasite genetic diversity abundantly across landscapes compels
deeper, more systematic exploration of how environmental variables influence the spread of
disease. As environmental context is only marginally considered in the population genetic

analyses of Chapters 2 — 4, Chapter 5 proposes a new, spatially explicit modelling framework



to predict vector-borne parasite gene flow through heterogeneous environment. In this
framework, remotely sensed environmental raster values are re-coded and merged into a
composite ‘resistance surface’ that summarizes hypothesized effects of landscape features on
parasite transmission among vectors and hosts. Parasite population genetic differentiation is
then simulated on this surface and fitted to observed diversity patterns in order to evaluate
original hypotheses on how environmental variables modulate parasite gene flow. The chapter
thereby makes a maiden step from standard population genetic to ‘landscape genomic’

approaches in understanding the ecology and evolution of vector-borne disease.

In summary, this dissertation first demonstrates the power of population genetics and
genomics to understand fundamental biological properties of important protist parasites, then
identifies areas where analytical tools are missing and creates new technical and conceptual
frameworks to help fill these gaps. The general discussion (Chapter 6) also outlines several
follow-up projects on the key finding of meiotic genetic signatures in 7. cruzi. Exploiting
recently developed T. cruzi genome-editing systems for the detection of meiotic gene
expression and heterozygosis will help understand why and in which life cycle stage some
parasite populations use sex and others do not. Long-read sequencing of parental and
recombinant genomes will help understand the extent to which sex is diversifying 7. cruzi
phenotypes, especially virulence and drug resistance properties conferred by surface
molecules with repetitive genetic bases intractable to short-read analysis. Chapter 6 also
provides follow-up plans for all other research chapters. Emphasis is placed on advancing the
complementarity, transferability and public health benefit of the many different methods and

concepts employed in this work.
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Sao Paulo (state of Brazil)

Santa Rita (community in Loja Province, Ecuador)
Sequence Read Archive or serum resistance-associated
singleton sites

DNA encoding the small subunit of the ribosome (e.g., bacterial 16S)
stomodeal valve

Trypanosoma or Triatoma

bat-associated 7. cruzi sublineage

T. cruzi discrete typing units [ — VI

T. cruzi I subtypes suggested by some studies (Tcla is also termed Tclpom)
T. cruzi 1 reference strain Sylvio X10/1
trypanothione reductase

topology weighting by iterative sampling of sub-trees
previously unidentified

unweighted pair group method with arithmetic mean
uninfected vector gut

variant call format

version

versus (against)

visceral leishmaniasis

Venezuela

genome-wide association study

whole-genome sequencing

median Watterson estimator

median nucleotide diversity

population recombination parameter

chi-squared statistic

The abbreviations above are generally also defined upon first use within each chapter.
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Chapter 1

General introduction and literature review: population genetics and genomics in the

study of Chagas disease and American visceral leishmaniasis

1.1 Population genomics as a tool to address Trypanosoma cruzi and Leishmania

infantum epidemiology

Trypanosomatid parasites pose grave threat to life and livelihood in Latin America. Human
infection by Trypanosoma cruzi leads to a wide range of cardiac and gastrointestinal disorders
known as Chagas disease!. Severe forms claim an estimated 12,000 lives and $1.2 billion in
lost productivity per year>*. Up to 100 million people stand at risk of infection, especially the

rural poor?.

The related trypanosomatid Leishmania infantum also threatens impoverished communities
with deadly visceral disease, parasitizing internal tissues and organs such as the bone marrow,
liver and spleen®. Up to 6,800 cases of visceral leishmaniasis are estimated to occur each year

in Latin America, mainly in Brazil, and case fatality rates lie between 10 and 20%”°.

Despite this major socioeconomic impact, the eco-epidemiology of 7. cruzi and L. infantum
is only very partially understood. Even some of the most basic biological properties, for
example, the rate of sexual versus clonal reproduction, remain relatively obscure®. Such gaps
in understanding come as no surprise. The elaborate life cycles of these vector-borne parasites
are very difficult to study. Their microscopic size, inaccessible sites of (intra-cellular)
infection and sensitivity to culture, for example, often inhibit direct observation of dispersal,
biomedical properties and other critical life-history traits’®. Unbiased sampling is not
ethically possible in humans and also challenging in other cryptic, elusive or asymptomatic

vectors and hosts.

Fortunately, however, information on unobserved trypanosomatid behavior is not forever lost.
Wherever it goes, a lineage keeps a diary of its experiences in heritable genetic code. This
allelic repertoire, when analyzed within and among individuals over space and time, unveils
traces of population structure and its antecedents, for example, paths and barriers of dispersal,
mechanisms and frequency of mating, local adaptation, or historical bottleneck and radiation
events”* !, This concept lies at the core of population genetics, which has come to form a
primary theoretical framework for trypanosomatid disease surveillance and control!?,
Unfortunately, however, blunt and unstandardized molecular and statistical tools have kept

this framework far from complete!*~1°.
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1.2 Literature review synopsis

This dissertation exploits novel sequencing and computational approaches to help resolve
major open questions about the ecology and evolution of important human parasites such as
T. cruzi and L. infantum in Latin America. The following literature review first provides a
brief description of Chagas disease and its burden to public health (Section 1.3.1), then
highlights cornerstones of past 7. cruzi population genetic research. Current understanding of
intra-specific subdivision and lineage-associated geographic distributions, disease phenotypes
and transmission ecologies are discussed (Sections 1.3.2 to 1.3.6). Section 1.3.7 describes
theories about reproductive mechanisms and the frequency of genetic exchange in 7. cruzi, a
subject of ongoing debate®. This species has for decades been considered a paradigm of
‘predominant clonal evolution’!¢, but largely based on low-resolution genetic marker systems
and questionable sampling designs®. Sections 1.4.1 and 1.4.2 then introduce visceral
leishmaniasis and its non-endemic distribution in the New World (L. infantum is thought to
have been introduced to the American continent during European colonization ca. 500 years
ago!”). Section 1.4.3 highlights gene and chromosomal copy number variation as key
drivers of evolutionary adaptation in Leishmania parasites?>!. Section 1.4.4 describes genetic
hybridization as another important source of genetic and phenotypic change in the genus
(unlike in 7. cruzi, meiotic sex has been experimentally proven to occur within and between
Leishmania spp., but the relevance of genetic exchange to diversity patterns in natural
Leishmania populations remains poorly described®?). The aim of the literature review is also
to highlight long-standing challenges in trypanosomatid population genetic inference. A
number of these challenges are summarized in the penultimate section, after key advantages
and prospects of whole-genome sequencing (WGS) studies have been highlighted in Section
1.5. These include the prospect of applying ‘landscape genomics’® approaches to
trypanosomatid research. Arthropod-borne parasite dispersal is sensitive to environmental

heterogeneity?*?°

, and a landscape genomics framework may contribute to the design of
intervention strategies by clarifying how environmental conditions promote or inhibit the
spread of disease into human populations from the wild. The final section recapitulates key
knowledge gaps and research opportunities evident from the preceding review. These topics

become the focus of (research) Chapters 2 — 5.
1.3.1 Chagas disease — a public health burden

Chagas disease has been considered the most important parasitic infection in Latin America?®.
Recent estimates indicate that ca. 10 million people are infected®’ by its etiological agent,
Trypanosoma cruzi, a zoonotic kinetoplastid protozoan pathogen transmitted by more than

100 species of hematophagous triatomine vectors among an even greater number of domestic
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and sylvatic mammalian hosts>®?. Also known as American trypanosomiasis, this disease
begins when infective metacyclic trypomastigotes from infected triatomine feces enter host
mucosal membranes, conjunctivae or abraded skin®. The full life cycle is described in Fig.
1.1. Oral outbreaks, congenital transmission and blood transfusions are important secondary,

vector-independent routes of infection'.

Figure 1.1 The T. cruzi life cycle — image modified from www.cdc.gov and descriptions based on
Nagajyothi et al. (2012)3'. 1) An infected triatomine releases metacyclic trypomastigotes in its urine
and feces while feeding on host blood. These flagellated parasite stages enter the host at the site of
the bloodmeal or through intact mucosa, especially the eyes. 2) Inside the host, the metacyclic
trypomastigotes invade local cells and differentiate into amastigotes. These intra-cellular stages
undergo multiple rounds of multiplication by binary fission before differentiating into trypomastigotes.
The cell eventually ruptures and bloodstream trypomastigotes are released into circulation to infect
new tissues, preferentially muscle and reticuloendothelial cells. 3) Bloodstream trypomastigotes can
also be ingested during triatomine blood meal. 4) The ingested trypomastigotes differentiate into
epimastigotes in the triatomine midgut and multiply. 5) A proportion of parasite cells periodically
differentiates into metacyclic trypomastigotes in the hindgut and is released with the feces. The
triatomine generally remains infective for life32. Vector stages are outlined in blue. Host stages are
outlined in red. Blood meals are shown on a human host but countless other mammals can be
infected®3. Opossums, for example, are frequently infected by Tcl (see intra-specific taxonomy in
Section 1.3.2 and ecological relationships in Section 1.3.6). *Infection by predation also occurs in
many species as well as via anal scent glands in opossums33:34,
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Following the acute (often subclinical) phase during which 7. cruzi circulates at highest levels
in the blood for up to three months, 30 — 40% of cases develop chronic infections
characterized by various irreversible, potentially fatal cardiac, gastrointestinal and/or
neurological syndromes®. Chagas disease accounts annually not only for ca. 12,000 deaths,
but for at least 800,000 disability-associated life years and a global economic toll of ca. 1.2
billion USD?**%, Vaccinations do not yet exist and only two drugs, benznidazole and

t37

nifurtimox, are available for treatment’’. Both of these nitroheterocyclic compounds can

involve severe side effects (e.g., neurological disorders*®*°) and typically fail in the chronic
phase (success rates below 20%)’. Treatment is more effective in acute and/or pediatric
patients (ca. 80% success rate) but is often inaccessible to the poor and rural communities
where human infection prevails*’*’, Chagas disease is for such reasons considered a
‘neglected tropical disease’ whose intervention requires much stronger support*!'. Investment
decisions must recognize the widespread, poorly defined endemicity of 7. cruzi in the wild
and its multifarious routes to human infection'?*?, In the face of global change, these features
recommend heavy resource allocation to research on the transmission ecology and evolution
of Chagas disease. If the biological and environmental variables shaping transmission
pathways and/or promoting the emergence and transformation of epidemiologically relevant
phenotypes (e.g., more drug-resistant and virulent parasite populations) are identified, this
likely indelible zoonosis may become more anticipatable and therefore fencible in its spread.

Population genetics, genomics and landscape genomics (i.e., the formal unison of landscape

ecology and population genomics) are core to reaching the understanding required.

1.3.2 Genetic Subdivision within 7. cruzi

T. cruzi population genetics is an area of active research. Basic ancestral relationships***

remain disputed and early dogma* about the (in-) frequency of genetic exchange might soon
need to be replaced®!*4647 There is broad consensus around the subdivision of T. cruzi into
six distinct lineages, so-called discrete typing units (DTUs), now numbered Tcl through TcVI,
and referred to as Tcl, Tcllb, Tcllc, Tclla, Tclld and Tclle, respectively, prior to 201212,
These DTUs are defined as ‘sets of stocks that are genetically more related to each other than
to any other stock and that are identifiable by common genetic, molecular or immunological

markers’*®,

Numerous genetic markers have been applied to define genetic diversity in 7. cruzi (Tbl. 1.1).
Analogous results from disparate typing methods generally substantiate the six-DTU
subdivision, but there is a lack of consensus around what markers to use and many typing
assays are not DTU-specific (e.g., differentiating across, but not within, zymodemes) and/or

do not yield repeatable results. A very commonly used mini-exon size polymorphism typing
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assay, for example, does not distinguish among TclIl, TcV and TcVI and only sometimes
distinguishes Tcll from TcIV*~3!. An equally popular size polymorphism assay at the 24Sa
rRNA locus does not distinguish, e.g., Tcl from Tclll or Tcll from TcVI, and amplicons for
Tclll and TclV appear to vary based on geographic origin®*>>2>3. There is also suspicion that
additional lineages (e.g., a more recently identified bat-associated lineage known as TcBat>*)

have been neglected (e.g., classified as Tcl) by sparse marker sets of the past™.

Table 1.1 Molecular markers used to distinguish T. cruzi DTUs — based on Messenger et al. (2015)'5.

DTU-assignment method

Multi-locus enzyme electrophoresis

Restriction fragment polymorphism analysis

Multi-locus sequence typing
of nuclear genes

Multi-locus sequence typing
of kinetoplast genes

Fluorescent fragment length barcoding
Multi-locus microsatellite typing

High-resolution melting analysis
Single-stranded conformation polymorphism analysis
Amplicon sequencing

Size polymorphism analysis of multi-copy
genetic markers and minicircle sequences*

Pulsed field gel electrophoresis
(and hybridization to labelled probes)

Random amplification of polymorphic DNA

Example of genetic markers

ASAT, ALAT, PGM, ACON, MPI, ADH, MDH,
ICD, 6PGD, G6PD, PEP, GPI

HSP60, GPI, COll, GP72, 1F8, Histone H3,
ITS, TeSC5D, mHVR

TcMSH2, DHFR-TS, TR, LYT1, Met-l,
Met-ll, TcAPX, TcGPX, TcMPX, GPI,
HMCOAR, PDH, GTP, STTP2, RHO1

12S rRNA, 9S rRNA, cytB, MURF1, ND1,
COIl, ND4, ND5, ND7, mHVR

28Sa rRNA, 18S rRNA

10101(CA)s, 11283(TA)s, 7093(TA)s, TcUn4,
mclf10, 10359(CA), 10187(TTA)

SL-IR, 24Sa rRNA
18S rRNA, cruzipain, P7-P8
TcGP63, ND5, 18S rRNA, SL-IR

SL-IR, 24Sa rRNA, 18S rRNA,
A10, P7-P8, mHVR*

Chromosomal bands
(1F8, cruzipain, FFAg6, Tc2, P19)

None (no prior sequence info. needed)

Several authors have therefore sifted through previous typing systems to work out multi-step,
multi-marker PCR-based protocols or identify targets for Sanger sequencing that most
efficiently and accurately discriminate all DTUs. These typically suggest the analysis of
multiple different single-copy genes (to limit disorientation by hybrid and repeat-rich
genotypes), €.g., a size polymorphism triple-assay of heat shock protein 60, glucose-6-
phosphate isomerase (GPI) and LSU rDNA gene fragments or multi-locus sequence typing
(MLST) of house-keeping genes such as C-5 sterol desaturase, rho-like GTP-binding protein,
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mitochondrial peroxidase, 3-hydroxy-3-methylglutaryl-CoA reductase and GPI°*3%, MLST
is advantageous also because results are easily shared in online archives and can be extended
for high-resolution intra-lineage analysis otherwise performed via multi-locus microsatellite

typing (MLMT)** results of which cannot be shared systematically among labs.
1.3.3 Geographic distribution of DTUs

Heavy past emphasis on lineage assignment based on the six-DTU framework have helped
chart 7. cruzi phylogeography across much of the American continent. A recent meta-analysis
shows that over six thousand strains (from 137 different publications) have been classified to
the DTU level®®. Tcl clearly appears to be the most widely dispersed DTU. It is detected
throughout the range of its six most important vector genera (see Section 1.3.6), as far north
as California and south into northern Chile and Argentina. Human Tcl infections appear to
predominate in Central and northern South America but are less frequently detected south of
the Amazon basin. Tcll is most often reported from the southern and central regions of South
America, extending northward primarily along the Atlantic Forest of Brazil®®!. TcIIl appears
to be most common in Bolivia, Paraguay and Brazil. It is rarely found in human hosts. TcIV
accompanies Tclll in Amazonia and is found with Tcl in northern South America as well as
in the southern United States. Distributions of TcV and TcVI are also thought to overlap
considerably in the Gran Chaco and spread into the Southern Cone, though TcV may reach
farther southwest and TcVI may take more into southern Brazil'*>>%2, Tc¢V and TcVI are also
occasionally reported from the North of South America (e.g., Colombia), most likely due to

long-range anthropogenic importation events®.

Our understanding of DTU phylogeography is incomplete (especially for TcIl) due to limited
and highly patchy geographic sampling coverage (e.g., just two DTU-assigned strains from
Panama vs. hundreds from Colombia in meta-analysis by Breniére et al. (2016)*°) and various
other forms of bias, e.g., less frequent sampling from sylvatic ecotopes (more than two thirds
of DTU-assigned strains appear to represent domestic or peri-domestic environments™) or
from elusive non-human hosts. Differential tissue tropism and mixed-strain infections (see
Sections 1.3.5 and 1.6) also jeopardize representative sampling and culture within and across

DTUs.
1.3.4 Phylogenetic ancestry among DTUs

Enzymatic, genetic and — as far as available — genomic analyses (see current reference
assemblies at https://www.ncbi.nlm.nih.gov/genome/genomes) consistently suggest that Tcl
and Tcll represent ancestral lineages, i.e., are not derived from other DTUs>>%+%% A number

of individual (GPI, COII-ND1, TR)**7° and concatenated marker sets®®’! have yielded similar
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divergence time estimates based on Bayesian evolutionary analysis by sampling trees
(BEAST), suggesting that the common ancestor of Tcl and TclIl occurred less than four
million years ago. It has also become widely accepted that TcV and TcVI are the hybrid
progeny of the ancestors of Tcll and TcIII**%*71-7¢ Tc¢V and TcVI are the most similar of all
DTUs and the TcVI (‘CL Brener’) reference genome comprises two divergent haplotypes,
one highly similar to T¢Il (i.e., the ‘Esmeraldo-like’ haplotype) and the other highly similar
to TcIIl””. Despite their high genotypic similarity, TcV and TcVI most likely derive from two
separate ancestral Tcll/Tclll hybridization events because Esmeraldo-like and non-
Esmeraldo-like haplotypes of TcV typically cluster closer to Tcll and Tclll (respectively)
than to correspondent haplotypes of TcVI’%71:%%76 While these points on DTU ancestry attract
relatively little debate, details surrounding the speciation of TclIl and TcIV have been subject
to controversy for several years. A central question has been whether an early hybridization
between the ancestors of Tcl and Tcll produced a lineage that diverged into TclIll and TclV
prior to the hybridization(s) of Tcll and TclIll that produced TcV and TcVI (the ‘two-
hybridization” model*) as illustrated in Fig. 1.2a. The alternative ‘three-ancestor’ model**
(see Fig. 1.2b) suggests that no other nuclear hybridizations occurred prior to those that most
recently led to TcV and TcVI. A related model by Tomasini and Diosque’® (see Fig. 1.2¢)
elaborates that ancestral TcIV diverged into separate North (TcIVnN) and South American
(TcIVs) lineages during the Great American Interchange’® and that mitochondrial
introgression occurred several times from ancestors of TcIVs to ancestors of Tclll. Tomasini
and Diosque also suggest that Tcl, Tclll, and TcIV form a private monophyletic group’®. The
three-ancestor model, by contrast, does not define TcIV ancestry and depicts Tclll as an
independent (i.e., non-nested) ancestral strain. Proponents of the two-hybridization model
have emphasized the presence of mosaic markers in Tclll and TclV, i.e., mutations shared
between Tcl and TclIl or TcIV and between Tcll and Tclll or TclV at different positions of
the same allele**”’. Mosaicism has also been observed across markers, i.e., phylogenies built
from some markers showing TcllI cluster with TcI**#%-#2 and those built from other markers
showing TcllI cluster with TcII*-%¢6774 The separation of Tclll and/or TcIV from Tecll
towards Tcl, however, predominates in analyses based on concatenated marker sets and was
also inferred from recent genomic assembly of Tclll (‘231”) and comparisons to TcVI and
Tcl-Sylvio genomes®. Furthermore, analysis of the TcVI genome finds evidence for

mosaicism in less than one percent of core regions in the non-Esmeraldo-like haplotype®*34,

1** and that of Tomasini and Diosque’® suggest that

Proponents of the three-ancestor mode
intermittent base or sequence similarities between Tcl and Tcll have too rarely been
confirmed as synapomorphies based on outgroups that help identify ancestral states’!’®, with

Tomasini and Diosque also having illustrated how inference changes when 7. c. marinkellei
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sequences are added to alignments previously used to establish the two-hybridization model
by Westenberger et al. (2005)’. With the additional outgroup included, nucleotide positions
where Tcl-like TclIIl or TcIV sequences become Tcll-like appear to be homoplasies in Tcl
rather than symptoms of mixed ancestry due to previous hybridization between Tcl and TcIl’S.
The model by Tomasini and Diosque, however, is not supported by recent sequence analysis
of satellite DNA® and other authors suggest that GPI sequences from TcIIl/TcIV resemble
TclII/III mosaics also with outgroups included in analysis®. Like the three-ancestor model,
which did not include any samples of T¢IV, the model by Tomasini and Diosque cannot be
considered stable without better representation of 7. cruzi diversity within genomes and
DTUs, especially TcIV. The TcIV genome has yet to be sequenced or assembled and most
studies have used three or less reference sequences to represent this DTU*7%7, Limited

8688

character and taxon sampling is well known to mislead phylogenetic inference and

therefore must be ameliorated to clarify theory. It may also be helpful to reconsider the use of
standard (bifurcating) tree construction when speciation is thought to involve introgression

and genome-wide hybridization events’®76%

. Modifications to classical phylogenetic
analyses (e.g., network models®®°") may help resolve this issue pending more regular use of
WGS methods that explicitly account for lineage sorting, e.g., by comprehensively
quantifying ancestry contributions (i.e., for each base in the genome) or sliding-window

network construction across chromosomes®>?>.
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Figure 1.2 Three major models of DTU speciation. a The two-hybridization model*® suggests one
ancient genetic exchange event between ancestors of Tcl and Tcll (and subsequent loss of
heterozygosity) leading to Tclll and TclV as well as a more recent hybridization event between
ancestors of Tcll and Tclll leading to TcV and TcVI. b The three-ancestor model*4 suggests two recent
hybridization events between ancestors of Tcll and Tclll leading to TcV and TcVI without participation
of Tcl'3. ¢ A variation of the three-ancestor model by Tomasini and Diosque shows Tcll diverging from
all other DTUs before these diverged from Tcl”6. Tomasini and Diosque also specify recurrent
mitochondrial introgression from ancestors of TclVs to those of Tclll (green arrow). MRCA abbreviates
most recent common ancestor.
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1.3.5 DTU-specific pathologies

A comprehensive meta-analysis conducted by Messenger et al. in 2015 suggests that clear
evidence for an association between 7. cruzi genotype and key disease phenotypes (chronic
morbidity, risk of reactivation, congenital or oral transmission) does not yet exist!®>. The
review details how variable methods and quality of clinical characterization, stage
classification and lineage typing have encumbered progress on linking genotypes with
phenotypes to enhance the relevance of the six-DTU framework in the medical field. For
example, studies have often examined only cardiac (not gastrointestinal) tissues and rarely
assessed whether indeterminate infections later turned symptomatic. Prior to 2002, 7. cruzi
lineages were often typed using unstandardized multi-locus enzyme electrophoresis (MLEE)
protocols without validation from other markers and various mistakes in nomenclature have
occurred (see references in Messenger et al. (2015)'°). Conventional T. cruzi sampling
methods are also very prone to selection bias. Only few tissue types are assessable via biopsy,
and parasites are typically isolated by hemoculture or xenodiagnosis. Clones isolated from

949 and these

the blood are often genetically different from those sequestered in tissues
differences may be non-random, i.e., reflect differential tropism within and among DTUs
(e.g., Tcl in the esophagus and Tcll in the heart of a single patient®’), host genetics, or immune
state. It is possible that distinct subpopulations or constellations of subpopulations govern
disease outcomes and these are unlikely to be represented accurately in the blood. Parasite
genotypes have also been shown to vary across sequential blood samples®® and xenodiagnosis
is affected by the permissivity of the vector individuals or species applied” !, Selection bias
continues when isolated parasites are brought to the laboratory to enrich or separate (‘clone”)
cells for further study due to variable growth rates, starting concentrations or sensitivity to

102

culture and handling!®?. Diversity typically decreases over time!®’.

Despite the above caveats and little transition so far towards culture-free genotyping
techniques, some general associations between DTUs and disease phenotypes have been
advanced in the literature. These associations largely track the geographic distributions of the
different DTUs (Section 1.3.3) and thus might be argued to affirm the importance of parasite
genetic variation in determining clinical outcomes because no ethnic or human genetic
patterns are apparent across this range!®. Tcll is considered the primary agent of severe acute
and chronic Chagas disease in central and southern Brazil, where it is also frequently
associated with megacolon and megaesophagus without the detection of other DTUs>!:105:106,
Tcll is also involved in human infections in Bolivia and the Southern Cone, but patients often
appear co-infected with TcV or TcVI, and these DTUs are frequently detected alone (without

Tcll) in severe cases of disease!’’!'°. Interestingly, TcV is also linked with congenital

transmission in Argentina, Bolivia and southern Brazil because rates of congenital
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transmission reach up to twelve percent in areas where TcV predominates but remain below
one percent in areas associated to TcII'*!!"113_ Similar argument is also used to suggest that
Tcl does not cause digestive syndromes as these are rarely found in the Amazon and in
northern South America where this DTU prevails''®. Instead, Tcl is associated with chagasic
cardiomyopathy and, although long considered more benign than other DTU, is increasingly
associated with severe forms of disease in Venezuela and Colombia, occasionally also in the
Southern Cone®®!'"!8 In contrast to Tcl, Tcll, TcV and TcVI, relatively little has been
proposed about the clinical associations of TcllIl and TcIV. These DTUs appear to be most
common in sylvatic ecotypes (see next section) and may thus be less relevant to human
disease. Nevertheless, TcIV has been involved in severe (including lethal) cases of foodborne
transmission in Colombia and Brazil''”'2!. It is unclear whether these events reflect an
intrinsic propensity toward oral transmission and/or acute symptomology by the parasite or
food and living practices in rural areas where this DTU occurs. Fatal cases are also known

from Tel'?2.

Much remains to be done to verify the above associations and explain why different DTUs
might cause different forms of disease. As recently reviewed by Jiménez et al. (2019)!%, a
number of studies point to DTU-specific recognition by the immune system, and therefore,
DTU-specific (dysregulation of the) inflammatory response. It will be key to pursue such
hypotheses with more standardized clinical descriptions and methods that better apprehend
multiple (tissue-specific) genotypes occurring within single hosts. Previous success in
genotyping 7. cruzi directly from infected tissue (e.g., via low-stringency single-specific
primer (LSSP) PCR fingerprinting'®®, tDNA qPCR'%, kDNA restriction fragment length

)!2* or nested microsatellite analysis®) has generally involved a tradeoff

polymorphism (RFLP
in which high sensitivity at a small set of markers is favored over amenability to further
sequence analysis within and across DTUs. Creating efficient sequence-based approaches like
MLST for use on uncultured samples would help detail and more systematically document

relationships between infection diversity and disease phenotypes.
1.3.6 DTU-specific transmission cycles

Numerous ecological specificities such as vector/host species, climate and vegetation type
(even stratum, e.g., arboreal vs. terrestrial) have been designated to the DTUs. Notably, Tcll,
TcV and TcVI seem to rarely occur in sylvatic transmission cycles and predominate in
Triatoma infestans, whereas Tcl features in domestic and wild cycles (in the lowland tropics
as well as in arid environments), at least six genera of triatomine vector (Rhodnius, Triatoma,
Panstrongylus and Eratyrus, Mepraia and Dipetalogaster) and dozens of genera of

mammalian hosts'*!>62, Tcl is very common in Didelphimorphia (e.g., 262 of 509 cases
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summarized by Breniére et al. (2016)*), especially in Didelphis marsupialis, and range
overlap with the anthropophilic vector Rhodnius prolixus is considered an important driver of
human disease in northern South America'?®. Didelphid opossums have been shown to
tolerate high parasitaemia by Tcl but rapidly suppress infections by TclI!?6. Tcl is also
frequently reported from rodents, bats, carnivores and primates®. Infections in Artiodactyla,
Pilosa and Xenarthra are only sporadically found®. TcIll and TclV share a variety of hosts

15:127-129 “TcIlI appears to thrive

with Tcl but are much more rarely detected in domestic cycles
in areas where terrestrial vectors (e.g., Panstrongylus and Triatoma spp.) interact with
fossorial hosts. Dasypus noveminctus infection is especially common and armadillos have
been proposed to have facilitated the emergence and spread of ancestral TcIl/TclIIl hybrids
into domestic cycles of the Southern Cone®*'?°. Other TcllI hosts include caviomorph rodents,
bats, coatis, opossums and carnivores®*!*°, T¢IV is also found frequently in Cingulata as is
TclIl but has also been linked to arboreal cycles and palm-associated vectors such as Rhodnius

121 Hosts include arboreal (e.g., howler

robustus, R. pictipes and R. brethesi in the Amazon
monkeys, Marmosa opossums, rodents such as Oecomys mamorae) bus also terrestrial
(armadillos, rodents such as Proechimys spp., opossums such as D. brevicaudata) and semi-
terrestrial (e.g., coatis, Philander opossums, various bats) mammals in diverse biomes, e.g.,
Pantanal, Caatinga, Atlantic Forest of Brazil>*!3°, In the United States, TcIV is reported from

raccoons and domestic dogs!'*!"132,

Several studies have also attempted to define associations between genotypes and
transmission cycles at the sub-lineage level, particularly within Tcl, the most ecologically
eclectic and genetically diverse DTU. Again, a key focus has been placed on diversity in
sylvatic vs. domestic groups'**®133-141 Parasite population genetic differentiation between
these environments is of applied interest because it illuminates rates of parasite domiciliation
from the wild (e.g., before/after intervention measures and awareness-building) or parasite
genetic traits and vector associations that increase fitness in the domestic niche. Like at the
inter-DTU level, intra-DTU genetic discontinuity between sylvatic and domestic populations
may also reflect ancient divergence into different transmission cycles and/or co-evolution
with associated vectors and hosts. Similar isoenzyme profiles and phenotypes were noted
early among widely dispersed (i.e., > 100 km) domestic and peri-domestic strains (e.g., see
Widmer et al. (1985)'*? and Saravia et al. (1987)!*%), and significant genetic follow-up studies
began in 2007. Herrera et al.'** detected a domestic ‘haplotype 1° (later referred to as Tcla)
in distantly separated Colombian departments (Magdalena, Caqueta, and Boyaca) based on
single-nucleotide and insertion-deletion polymorphism in the non-transcribed spacer region
of the mini-exon gene (SL-IR). This haplotype was associated with the domestic cycle and

the vector R. prolixus. The study also found a ‘haplotype 2 (later Tclb) associated with
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domestic and peri-domestic cycles and the vector Triatoma dimidiata, a ‘haplotype 3’ (later
Tclc) associated with the peri-domestic cycle, and ‘haplotype 4’ (later Tcld) associated with
sylvatic transmission. Haplotypes Tcla and Tcld were also identified beyond the borders of
Colombia when Cura et al. (2010)"*7 expanded SL-IR analysis to 105 isolates from eleven
countries between the United States and Argentina, but Tcld showed no clear affinity to
specific ecotopes, occurring in various transmission settings in Colombia and Argentina,
sylvatic cycles in Brazil and human patients from French Guiana, Venezuela and Panama.
Tcla, however, showed a very clear pattern, remaining strictly associated to domestic cycles
throughout South America and becoming closely linked to sylvatic cycles at Central and
North American sites. This study was published just after that of Llewellyn at al. in 2009°°
which also examined Tcl diversity throughout the endemic range. The 48-marker
microsatellite panel applied to 135 samples in this study exposed extraordinary parasite
genetic diversity across South America and differentiation that correlated with geographic
distance, but one important exception was observed. Domestic samples from eleven different
states of Venezuela appeared highly similar to another and were clearly more closely related
to Central and North American than to Venezuelan sylvatic strains. Several high-resolution
mitochondrial and nuclear MLST/MLMT studies!*!3*142 followed to show that this ‘“VENpom’
group corresponded to the previously indicated Tcla SL-IR genotype and Zumaya-Estrada et
al. (2012)"%? advanced the hypothesis that this lineage (renamed TcIpowm) likely broke through
an ancient transmission bottleneck in North America and accompanied human migration into
South America within the last 23,000 years. Highly inefficient stercorarian transmission (i.e.,
> 900 bloodmeals before successful human infection'*?®) relative to rates of congenital
transmission (e.g., 58% in BALB/c mice'**) and long-distance anthropogenic dispersal were
suggested to have helped Tclpom perpetuate in domestic settings with little admixture from
sylvatic parasite diversity even in areas where infected triatomines frequently enter from the
wild>®. Nevertheless, previous hypotheses of TcIpom emergence due to adaptive changes in
epidemiologically relevant genes!*®!3® deserve further study as some important biological
differences have been observed relative to sylvatic genotypes. For example, Cruz et al.
(2015)!%5 observed lower levels of histopathological damage by Tclpom than by sympatric
sylvatic strains in mice and several studies have suggested higher bloodstream parasitaemia

by Tclpom in chronic cases of human disease”®!16:14,

Apart from the domestic-sylvatic interface, a number of high-resolution multi-marker studies
have also focused on possible (mechanisms of) substructure within sylvatic TcI'#7-13!, Notable
among these was a powerful MLST/MLMT analysis by Messenger et al. (2015)'* from
Bolivia that described limited Tcl gene flow between nearby arboreal and terrestrial

transmission cycles in contrast to low genetic subdivision (Fst) among parasites from similar
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ecotopes at much more distant sampling sites. These results supported ecological host fitting
as a predominant mechanism of 7. cruzi diversification, not only within Tcl but also in regard
to niche-associated inter-lineage speciation patterns described above. Ecological fitting
describes a ‘process whereby organisms colonize and persist in novel environments, use novel
resources or form novel associations with other species’ by re-tooling existing trait repertoires
rather than through de novo adaptation (positive selection) after contact. This process also
been proposed to explain host ranges among different trypanosomatid species'> and even to
have facilitated first transitions to parasitism in the free-living (bodonid) relatives of the

Trypanosomatidae'>>.
1.3.7 Reproduction

Parasite reproductive mode is central to epidemiology because it determines how parasite
diversity distributes and changes in space and time. Genetic exchange can create important
new genetic combinations or transfer these among divergent strains, for example, it has been
shown to increase vector transmissibility, parasitaemia and phenotypic plasticity in

154,155

Leishmania and to confer human infectivity to previously non-infective subspecies of

Trypanosoma brucei'*®. Genetic exchange also accelerates diversification, and can thereby
help parasites evade the immune system'>’, adapt to environmental change'® or outpace drug

design'>’

. Clonality, on the other hand, implies that population genetic subdivisions are stable
and that genomes decay over time. Rates of divergence and dispersal become predictable and
simple marker systems may suffice to track outbreaks or guide treatment of human disease'®.
Although 7. cruzi primarily uses clonal reproduction, the holocenic expansion of virulent
inter-lineage hybrids (TcV and TcVI) into domestic cycles® makes it clear that genetic
exchange is also pivotal to its speciation and the long-term evolution of Chagas disease.
Where, how, and how much genetic exchange occurs in contemporary populations, however,

remains incompletely understood and has attracted decades of debate®.

For many years genetic exchange was considered too rare to be relevant to contemporary
variation in 7. cruzi diversity and population structure. A theory known as ‘predominant
clonal evolution’ (PCE) came to dominate the literature as first reports of strong linkage

> s45,161 were

disequilibrium at multi-locus enzyme electrophoresis (MLEE) loci from the 1980
substantiated by linkage among independent markers sets (‘criterion g’ in Tibayrenc et al.
(1990)1%), e.g., between MLEE and randomly amplified polymorphic DNA (RAPD)%¢7,
between microsatellites and rDNA RFLP'®* and among MLST, MLEE and RAPD'®. The
perseverance of the DTU framework was also emphasized as evidence that recombination is

165

only meaningful at the macroevolutionary scale ™, and it was proposed that stable inter-

lineage divisions are mirrored within each DTU'®. Evidence for these so-called ‘Russian doll
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patterns’ (RDP)!®® however, remains scarce. The model was introduced!'®® (and remains'®)
based primarily on dispersed Tcl substructures Tclpom and Tcld (see Section 1.3.6)!3%137:167
without taking effects of ancient bottlenecks through domestic/sylvatic subdivisions or
convergent host fitting processes into account. The authors also do not address reticulate
phylogenetic structures in data suggested to evince RDP in Ramirez et al. (2012)'%166167 and

are not deterred by various studies!#*!4%147:168 that contradict the model in TcI'6.

A number of authors have considered past observations inadequate to quantify the relevance
of genetic exchange within DTUs, calling for genetic marker coverage to be extended and
spatial sampling designs corrected (e.g., to avoid Wahlund effects!®®) for an accurate
representation of 7. cruzi’s reproductive mode or modes®!*17°, This view is also inspired by

3! which demonstrates that 7. cruzi has an extant

laboratory work by Gaunt et al. in 200
capacity for genetic exchange. The authors transfected putative parental Tcl isolates from
Carrasco et al. (1996)!7? with recombinant plasmids conferring resistance to either neomycin
or hygromycin B and then co-passaged these through mammalian (Vero) cell cultures and in
vivo in mice and triatomines. Six clones from Vero cell culture (but none from mice or
triatomines) survived double drug selection and were confirmed to be intra-lineage
recombinants by MLEE, karyotyping, microsatellite analysis and nucleotide sequencing of
housekeeping genes. Surprisingly, however, the recombinants had inherited both parental
alleles at most nuclear loci in what appeared to have been a non-meiotic genome fusion event.
The authors suggested a mechanism similar to that known from pathogenic fungi whereby
diploid genomes fuse to form tetraploid offspring and concerted chromosome loss gradually
brings these tetraploids back to the diploid state'”®. Consistent with this hypothesis, follow-

1.17% showed that nuclear DNA content in the six

up flow cytometric analyses in by Lewis et a
hybrids had reduced by ca. 15% by 2009, and this sub-tetraploid state was shown to remain
stable during various forms of stress. The authors also examined DNA content in the natural
hybrids TcV and TcVI and both appeared to be fully diploid. Lewis et al. (2019) noted the
possibility of complete erosion of tetraploidy but also that heterozygosity patterns in TcV and
TcVI are more consistent with meiotic than with parasexual origin because random post-

fusion chromosome losses are expected to generate non-recombinant (homozygous)

genotypes in approximately one third of the genome'”*.

Various authors have therefore set out in search of reproductive phenomena and further
evidence for/against parasexuality in the field, many also shifting study focus to finer spatial
scales. Evidence for nuclear genetic exchange is accumulating from such studies in the form
of local Hardy-Weinberg allele frequencies, linkage equilibrium between loci and a lack of
repeated multi-locus genotypes!4%:147:168:175:176 \egsenger et al. (2015) also point to dissimilar

heterozygosity estimates between Tcl populations in Bolivia as a possible indicator of recent
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hybrid origin in some strains or different mating systems in different ecotopes'*.
Furthermore, several studies demonstrate phylogenetic incongruence between nuclear and
maxicircle sequences, suggesting that genetic exchange can (additionally or exclusively)
involve the transfer of mitochondrial DNA!4139:142.148.149.177 "qome authors demonstrate that
mitochondrial introgression can be very frequent (e.g., Ramirez et al. (2012) detected 17
introgression events among 100 clones'), perhaps even significantly more common than
nuclear genetic exchange!™. Ploidy or allele frequency patterns consistent with genome
fusion as in Gaunt et al. (2003)!”!, however, have not surfaced in Tcl populations from the
field. Recent genomic analysis did find extensive aneuploidy in Tcll isolates but with no
further evidence as to whether karyotypes reflected non-meiotic reproductive histories or
mitotic amplifications from stress'’8. The latter is not uncommon in eukaryotic microbes, e.g.,

in Saccharomyces'” or Leishmania spp.'*.

In light of growing evidence of contemporary genetic exchange, the PCE model has been
refitted several times since its first announcement in 1986%-1%166:16 Tibayrenc et al. (2015)!6
recently suggested, for example, that ‘it is quite possible that genetically related strains
undergo more genetic exchange than clonal propagation’. Nevertheless, these authors have

remained relatively hostile towards most new evidence of intra-lineage recombination (e.g.,

6,46,47 1817184)

see exchanges with Ramirez and Llewellyn or response to work on 7. congolense
and frequently discard evidence of Hardy-Weinberg equilibrium as type II error (i.e., the
inability to reject the null hypothesis of panmixia)'®® or suggest that mito-nuclear

incongruences reflect disparate evolutionary pressures and/or mutation rates'®.

Strategic, high-intensity surveys of genome-wide (mitochondrial and nuclear) polymorphism
among sympatric 7. cruzi individuals are therefore key to resolving this debate. As sympatry
is not a simple concept in this species, it will be important to design these surveys such that
the possibility of recombination can be examined not only between isolates from different
vector/host individuals but also between parasite clones from the same infection source. It

may also be helpful to target ‘potential hybridization zones’®!'#

and generally to return to
places where genetic exchange has already been suggested to occur, e.g., in rural areas of Loja
Province, Ecuador'* or in undisturbed enzootic cycles of the Amazon, the approach taken by

Gaunt et al. (2003)!71172,
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1.4.1 Visceral leishmaniasis — a public health burden

Visceral leishmaniasis follows malaria as the world’s second deadliest parasitic infection'®®
and its global economic impact ranks near that of Chagas disease'®®. Prevalence is highest in
East Africa and on the Indian subcontinent but is also significant in Brazil, where over 50,000
cases have been recorded since 2001'¥7. Less than 10% of cases appear to occur in other Latin
American countries, but gaps in surveillance and reporting across the continent keep true rates
of infection unclear. This vector-borne zoonosis is caused by the trypanosomatid parasite
Leishmania donovani in Asia and East Africa and by its closely-related congener L. infantum
in the Americas, North Africa and Europe. Infection occurs when Phlebotomus (Old World)
or Lutzomyia (New World) sandflies feed on vertebrate blood and infective (promastigote)
parasite stages within the saliva invade and replicate (as amastigotes) in host macrophages
and other mononuclear phagocytic cells, especially in the bone marrow, liver and spleen (see
life cycle in Fig. 1.3). Although symptoms are not always overt and the incubation period can
last from weeks to several months, the human host generally dies within two years of infection
without treatment®. It is therefore all the more cruel that visceral leishmaniasis, like Chagas
disease, prevails in regions where disease awareness is limited and public health infrastructure
is absent or frail'®®, Even when acknowledged and accessible, anti-leishmanial drugs are
expensive (costs often exceed household income'®?) and not consistently effective (due also
to the evolution of drug resistance!®®) or safe (systemic antimonial treatment, for example,
can have lethal side effects (severe nephro- and cardiotoxicity, etc.) but remains a drug of
choice in Latin America due to higher costs of less toxic liposomal amphotericin B'!). The
zoonotic nature of visceral leishmaniasis caused by L. infantum complicates the situation.
Unlike the anthroponotic transmission cycles typical of L. donovani, the transmission of L.
infantum is thought to rely heavily on intermediate hosts, particularly on domestic dogs, the
only primary reservoir confirmed for Brazil'®?>. Human treatment alone is therefore unlikely
to protect public health unless an economic (mass-administrable) vaccine is found. No human
vaccine has yet been approved. A number of canine vaccines, however, are becoming
available and are widely recommended over dog culling approaches used to date in
Brazil'**!%*, Future design of vaccines and drugs needs to consider how parasite diversity and
abundance is spatially distributed and changes over time. Without such population genetic
understanding, vaccines may confer incomplete immunity (i.e., only against a subset of
genotypes) or drugs may fail when parasites show unexpected polymorphism or exploit

alternative metabolic paths.
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Figure 1.3 The L. infantum life cycle — image modified from www.cdc.gov and descriptions based on
Sadlova et al. (2017)'%5. 1) An infected sand fly releases metacyclic promastigotes through the
proboscis while feeding on host blood. 2) The promastigotes are phagocytized by macrophages and
other types of mononuclear phagocytic cells. 2) They then differentiate into amastigotes and multiply
by binary fission within the phagolysosome. 3) The cell eventually ruptures, and the amastigotes are
released into circulation. They become phagocytized by other cells and begin to accumulate in the
deep organs of the reticuloendothelial system, e.g., in the lymph nodes, bone marrow, liver and spleen.
Infected macrophages can also be ingested when a sand fly take a blood meal. 4) Amastigotes within
the ingested macrophages differentiate into procyclic promastigotes and multiply within the peritrophic
matrix (PM), a chitinous envelope secreted by midgut epithelial cells. This envelope degenerates
within three days and the parasites are released as nectomonads. 5) The nectomonads migrate
towards the thoracic midgut, where they multiply as leptomonads and later haptomonads that colonize
the stomodeal valve (SV). Metacyclic promastigotes also form. Blocking and damage to the valve by
the haptomonads facilitates the release of the metacyclic promastigotes through the proboscis into
the host. The sand fly generally remains infective for life'®6. Vector stages are outlined in blue. Host
stages are outlined in red. Blood meals are illustrated on a human host but the domestic dog is the
primary reservoir of L. infantum in the Americas'%".

Vaccine/drug specificity and diversity also affect the risk of resistance evolution and can only
be chosen correctly if parasite genetic distribution and gene flow are well understood!*%!%.
Unfortunately, the required population genetic insight has often come too late. Retrospective
population genomic analyses, for example, now distinguish the molecular bases of
widespread antimonial resistance on the Indian subcontinent, showing how fully resistant
groups emerged independently from pre-adapted subpopulations, some also transferring key

resistance mutations by genetic exchange?®’

. Apart from predicting antimonial resistance,
such high-resolution population genetic studies could have prioritized vector control, e.g.,
towards areas where basic reproductive number (Ro) is high or where gene flow is expected

between resistant and susceptible parasite groups.
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1.4.2 Visceral leishmaniasis as a non-endemic, imported disease

The first case of visceral leishmaniasis in the Americas was diagnosed in 1913, the adult
patient having fallen ill with severe malaria-like symptoms three years earlier while working
in railroad construction near Corumb4, western Brazil?’!. No other cases were reported from
the country until 1934, when Penna detected intra-cellular Leishmania parasites in autopsies
of patients thought to have died from yellow fever in rural regions of the Southeast, North and
Northeast?*?. Few new cases emerged in the next two decades, the disease considered more
of a medical curiosity than any true threat to public health?®. This view changed in the early
1950’s when reports of visceral leishmaniasis rapidly multiplied in the rural Northeast — first
in the state of Ceard, where Deane and Deane diagnosed 188 cases (more than four times as
many as previously reported countrywide) over the course of a few months around the town
of Sobral?**. The burden of visceral leishmaniasis continued to grow across the Northeast in
the following thirty years, with new foci emerging in Bahia, Pernambuco and Piaui’®.
Infections most often occurred in young children’* and rarely in urban areas or in states
outside of Northeast Brazil, for example, in Goias, Minas Gerais, Mato Grosso and Mato
Grosso do Sul®®. As the country rapidly industrialized during these thirty years, millions of
people left the countryside for economic opportunities only to end up in the periphery of fast-
growing cities where sanitation and other infrastructure could not be maintained®®*. Probably
due in large part to this uncontrolled urban growth, the early 1980’s saw visceral leishmaniasis
begin its own process of urbanization and expansion across Brazil. The first major outbreak
took place in Teresina, the capital of Piaui’®, where > 1,000 cases occurred in just six months.
Large urban outbreaks followed in many major cities, for example, in the state capitals Sao
Luis (Maranhi0)?®, Natal (Pernambuco)?®’, Rio de Janeiro (Rio de Janeiro)**, Belo
Horizonte (Minas Gerais)*”’, and Campo Grande (Mato Grosso do Sul)?!°. By 1990, 53,480
cases of visceral leishmaniasis had been reported in the country?'!. More than 50,000 cases
were also recorded between 1990 and 20062!'? as well as between 2001 and 2017'%, the
Northeast now accounting for about half of national cases compared to ca. 90% in earlier
decades?!!*!3, This rapid urbanization and expansion of visceral leishmaniasis does not appear
to have occurred elsewhere on the continent. In 2012, less than five percent of cases occurred
outside the twenty states affected by visceral leishmaniasis in Brazil>!*!4. These cases include
human and canine infections from northern Argentina, Uruguay, Paraguay, Bolivia, Guyana,
Venezuela, Colombia, Costa Rica, Nicaragua, Honduras, El Salvador, Guatemala, Mexico
and southern USA2!*217_ This distribution of L. infantum across the Americas coincides with
that of Lutzomyia longipalpis, the parasite’s most important New World vector based on
decades of field-based and experimental research?'®. A number of alternative vector species

may occur but appear to have lower vectorial capacity and a more restricted geographic range.
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Lu. evansi, for example, has been recorded in parts of Mexico, Central America, Venezuela
and Colombia, sometimes where Lu. longipalpis is less abundant or does not occur, such as
near Colombia’s Caribbean coast>'?. Several cases of natural infection by L. infantum have
been reported®!* 22 but infections appear to be less successful than in Lu. longipalpis. Lu.
cruzi, Lu. intermedia and Lu. whitmani have also been suggested as significant vectors of L.
infantum in parts of Mato Grosso??}, Mato Grosso do Sul***, Goias?*® and Minas Gerais??°,
but arguments rest mainly on the low abundance of Lu. longipalpis and less on evidence that

these congeners can maintain the transmission of disease.

Despite the vast geographic range in which American visceral leishmaniasis occurs,

227,228,17 229,230

genetic and enzymatic diversity in New World L. infantum populations is far
lower than that in L. infantum populations from the Old World!”. Genetic divergence between
these populations is also very limited, often indistinguishable using classic marker-based
analyses such as RAPD??® or RFLP??’. For this reason, it has long been hypothesized that L.
infantum was introduced to the Neotropics from Mediterranean Europe or North Africa within
the last 500 years**”!”. Some authors have argued against such recent, post-Columbian
introduction, proposing that a distinct species, L. chagasi, entered South America with ancient
canids upon the formation of the Isthmus of Panama ca. 3 million years ago?!?*2. This
argument centered on the detection of benign infections in wild New World mammals
(primarily the crab-eating fox, Cerdocyon thous®', and to a lesser extent, Didelphis
albiventris** and D. marsupialis***) and the premise that adaptation to Lutzomyia, the New
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World vector genus, could not have occurred in so little time“”. Duration of host-parasite

association, however, does not necessarily correlate with virulence?3%2%’

and sampling bias
towards healthy individuals is likely to occur in surveys of wild mammal hosts'®’. A relatively
narrow host spectrum also does not accord well with millions of years of coexistence with the
exceptional mammalian diversity known of the New World. Lainson and colleagues, for
example, examined 2,637 animals for L. chagasi infection, including marsupials, procyonids,
rodents, canids, monkeys and edentates from Amazonian Brazil. Infection was found only in
C. thous®'. Prevalence of infection has been high in a number of other studies on the crab-
eating fox?*% 2%, but infectiousness and therefore, Ro, in this species may be very low!7?4!,
The argument that adaptation to a new vector genus is not possible within a few hundred years
is also easily dismissed. Lutzomyia longipalpis has been shown to be as susceptible to
European L. infantum parasites as is Phlebotomus ariasi, one of many different Phlebotomus

vector species exploited by L. infantum in the Old World**?

. All these points are consistent
with the arrival of L. infantum after Columbus and make a weak case for an anciently endemic
L. chagasi parasite, a case perhaps fully closed following higher-resolution genetic

comparisons of New World and Old World parasite populations based on MLMT!®!
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Applying highly polymorphic markers to exceptionally large sample sizes (e.g., 406 L.
infantum strains from seven countries of the New World and thirteen countries of the Old
World in Kuhls et al. (2011)'®), these studies demonstrated that low parasite genetic diversity
and divergence in the New World are very unlikely artefacts of previous resolution limits or
spatial focus. The interspersed phylogenetic positions of New World MLMT genotypes
within a wider Old World clade also reinforced the idea of multiple post-Columbian
introduction events. Multiple introductions more simply explain the widespread occurrence
of L. infantum in the Americas'® than does ancient dispersal (without diversification) across

this range!”.

Range expansion can precipitate strong natural selection and/or neutral population genetic
change, e.g., when pioneering species encounter novel environmental conditions, escape
native competition, or expand from small founding groups with high sensitivity to genetic
drift**. Hybridization, an important source of novel diversity in Leishmania'>*13>242% (see
Section 1.4.4) is also possible when previously isolated populations meet due to multiple
introduction events?*’. It is therefore surprising that, although most authors now recognize
American visceral leishmaniasis as an introduced disease, relatively little effort has been made
to distinguish or disentangle selective and demographic processes contributing to parasite
genetic divergence, and ultimately, clinical variation, in the New World. Microsatellite-based
approaches, for example, have described genetically divergent L. infantum subpopulations in
the West of Brazil'®?*® but none have followed up on (vague) hypotheses that some sort of
unique selection pressure (e.g., a distinct vector species) is operating near the Pantanal, or
alternatively, that this divergence stems from a separate bottleneck and/or introduction event.
Meanwhile, in other areas of the New World where clinical outcomes vary but genetic
subdivision appears absent or weak, it has been concluded that L. infantum diversity is too
low to account for differences in pathogenicity or response to drugs®®. This lack of
association between parasite genotype and disease phenotype could be true when multiple
marker systems do not differentiate strains with highly contrasting clinical profiles, e.g.,
strains that cause non-ulcerating cutaneous lesions vs. strains that cause the expected, visceral
form of disease’** 2!, In such cases, properties of the vector (e.g., biochemical characteristics
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of the saliva?®?) and host (e.g., age?>?, nutritional status*>*, or presence of co-infections such

as with HIV®?®) may predict disease outcome better than do parasite genetic traits®>!.
Nevertheless, it seems unwise to generalize that L. infantum genetic diversity is too low to
help determine disease outcomes or identify genetic bases of pathogenicity anywhere in the
New World range. Large microsatellite-based surveys (e.g., 15 microsatellites genotyped in
132 isolates) of L. donovani diversity, for example, also showed no link between drug

resistance and genotype?® where WGS later pinpointed resistance mechanisms and
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independent waves of purifying selection in low-diversity, yet cryptically diverging parasite
groups>®. While the first WGS study on American L. infantum strains did not find any
association between individual sequence variants and clinical outcome or host type®’, the
second (and only other WGS study on American L. infantum to date) found a strong
association between the presence of a ‘miltefosine sensitivity locus’ and positive response to
treatment with miltefosine, an important anti-leishmanial drug?®. This relationship was
recently substantiated with experimental evidence that locus knockout induces miltefosine
resistance in vitro (findings presented at the British Society for Parasitology’s March 2020
Trypanosomiasis and Leishmaniasis Seminar®°). The locus is expected to occur in at least
four copies within each cell given its position on chromosome 31, the only chromosome that
consistently shows tetra- or pentasomy in L. infantum and various other Leishmania
genomes>**+2372€0 Al four copies were often found to be deleted in L. infantum samples from
different states of Brazil, most often in those isolated from patients that relapsed after

treatment>>®

. When, why or where this deletion arose and how it confers resistance to
miltefosine remains unknown. Gene and chromosomal copy number variation is thought to
constitute a primary adaptive strategy in Leishmania (see Section 1.4.3) but the genes that
occur within the deleted locus (ecto-3'-nucleotidase/nuclease, ecto-3’-nucleotidase precursor,
helicase-like protein and 3,2-trans-enoyl-CoA isomerase) show no obvious relationship to the
metabolism of miltefosine within the parasite cell?!. It is also possible that the deletion itself
is non-adaptive but linked to an unnoticed complex of selected traits. Another possibility is
that genomes containing the deletion have proliferated in the absence of any true fitness

advantage, as could have occurred if the mutation arose early on an expanding wave front

and/or happened to survive a significant bottleneck event***,

With so many questions opening up upon closer analysis of L. infantum diversity in the New
World, the simplification that these populations were bottlenecked and therefore now too
homogenous to cause variable disease outcomes does not seem useful for future research.
Much work lies ahead to uncover underappreciated population genetic structure, its ecological
and evolutionary precedents, and relationships to variation in disease phenotypes. Major
human demographic changes within Brazil and elsewhere in the Americas will greatly
complicate this task. Frequent internal migrations, for example, make it difficult to distinguish
autochthony or obscure other, less recent demographic events, and changes in the prevalence
of different diseases (e.g., AIDS?*%) are known to affect the transmission and pathogenicity of
Leishmania parasites. Climate change is also rapidly changing the geographic distributions
and ecological associations of vector-borne diseases, confusing what little is known so far,
for example, about the epidemiological roles of vector and host species other than Lu.

longipalpis and the domestic dog.
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1.4.3 Molecular mechanisms of divergence and adaptation within Leishmania spp.

Unlike 7. cruzi lineages and subspecies that diverge strongly in repetitive surface gene
families at expanded telomeres?®>?%, the Leishmania genus shows strikingly little variation
in coding sequence composition or genome size?**. Coding sequence nucleotide identity
between L. infantum and L. major, for example, is approximately 94%, and both species
appear to have 32 Mb genomes composed of 36 chromosomes?**. At the intra-specific level
within the 7. cruzi complex, by contrast, coding sequence nucleotide identity between 7. cruzi
I and T. c. marinkellei is less than 93%, and the genome of 7. c. marinkellei is 11% smaller
than that of T. cruzi 1*%. Despite little apparent sequence variation within the Leishmania
genus, phenotypic variation is remarkably high. L. donovani and L. infantum typically cause
visceral leishmaniasis, L. braziliensis, L. guyanensis and L. panamensis can create highly
disfiguring, mucocutaneous lesions and L. mexicana, L. major and L. tropica, among several
other species, most often lead to less destructive, cutaneous disease!”!. These associations,
however, do not always occur as such, with highly contrasting clinical outcomes observed
within a single species and even a single focus of transmission. Dermotropic L. infantum
strains, for example, sometimes circulate among the expected, visceralizing forms?*’, and L.
braziliensis is known to cause both cutaneous and mucocutaneous disease!’!. Complex
influences of host/vector genotype and environment may contribute substantially to such
variation within species but do not explain the general discrepancy observed between low
genetic differentiation and vastly different phenotypes in the Leishmania genus. Different
programming of gene expression is likely key to generating diversity, including short- and

long-term adaptation, divergence and, ultimately, speciation in these parasites!3%-26,

Like all other trypanosomatids, however, Leishmania species do not use monocistronic
transcription, constitutionally transcribing genes in long polycistronic units instead of

individually from distinct promoter motifs>®’

. Aside from modifying transcript abundance by
deadenylation and cap removal as do other Trypanosomatidae®®® 2", the Leishmania genus
exploits an exceptional tolerance for karyotypic plasticity to modulate and diversify gene
expression®’1?72, This karyotypic plasticity occurs in the form of gene copy number variation
and chromosomal aneuploidy and extends the parasites’ ability to regulate expression levels,

possibly also the complexity of pleiotropic interactions among genes®’!?7,

Gene copy number variation is enabled by abundant intergenic repeat sequences, in large part
degenerate retroposons, that alter DNA replication patterns in several ways. Homologous
repeats of similar orientation (i.e., positioned head-to-tail) can anneal by loop formation of
the intervening sequence, and these loops can separate as circular amplicons (Fig. 1.4a)?".

Such extrachromosomal amplicon formation can be conservative or nonconservative,
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whereby the locus between the repeats is deleted from the original template strand®’>.
Alternatively, head-to-tail repeats (Fig. 1.4b) can lead to intra-chromosomal tandem
duplications by unequal sister chromatid exchange?’?. Yet another form of copy number
variation occurs when inverted (tail-to-head) repeats trigger DNA strand breaks and hairpin
structures that result in the formation of extrachromosomal linear amplicons®’. Patterns of
copy number variation appear to differ between strains and species and may in some cases
distinguish populations from different transmission cycles more clearly than do
SNPs2!:264274.275 _ A variety of associations between copy numbers and phenotypes, e.g., tissue
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tropism?’%, stress response or drug resistance?’>?’”*’® have also been observed, although the

mechanisms behind these associations often remain unclear°.
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Figure 1.4 Mechanisms of gene amplification in Leishmania — based on Ubeda et al. (2014)73.
a Homologous recombination between direct repeats can lead to circular amplification or to tandem
duplication by unequal sister chromatid exchange. b Linear amplification can also occur in the
presence of DNA strand breaks near inverted repeats. Broken ends are digested (by MRE11
exonuclease) and hairpin formation enables duplication of the locus. See Ubeda et al. for details?73.
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Aneuploidy in Leishmania is thought to occur due to unusually high rates of asymmetric

chromosomal allotment in mitotically dividing cells*”. Like gene copy number variation,

21,274

baseline ploidy levels and amplification programs appear to be species- and strain-

specific?’™

and enable rapid, reversible adaptation to changing environments, for example,
during transition between the vector midgut and the host phagolysosome®***°, Also as with

gene copy number changes, correlations between altered somy levels and drug resistance, e.g.,

272,281 271

to antimony or methotrexate”’’, frequently occur, but mechanisms (i.e., which specific
genes within a set of amplified chromosomes promote resistance) remain largely unsolved?’.
Another interesting aspect of chromosomal copy number variation in Leishmania relates to

the frequent presence of mosaic aneuploidy within strains®”®

. Mosaic aneuploidy occurs when
cells within a single cell population do not all have identical karyotypes but comprise a
diversity of subpopulations, each with a different karyotype, and subpopulations with
karyotypes advantageous to the present environmental conditions may thrive over others until
conditions change again, conceivably increasing the fitness of the strain as a whole. A recent
study also exposed that chromosomes with higher mutation rates may be more prone to
amplification and facilitate haplotype selection (i.e., deletion of less advantageous

chromosomes) within this mosaicism to accelerate adaptation in Leishmania parasites>.

Although relatively limited sequence diversity within the Leishmania genus has directed
much research interest towards gene dosage and mechanisms of post-transcriptional control
(reviewed elsewhere?®®), SNP and insertion-deletion (INDEL) mutations clearly also
contribute to speciation and phenotypic change. Comparing L. infantum, L. major and L.
braziliensis, for example, the relative frequency of non-synonymous vs. synonymous SNPs
and INDELSs (i.e., the possible occurrence of positive selection) differs in approximately eight
percent of syntenic genes, and many of these genes relate to core metabolic processes linked
to pathogenic traits’**. SNPs and INDELSs also drive pseudogene formation that contributes
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to divergence among the three genomes~*". Next to comparative genomics, experimental and

field studies have found a handful of point mutations that alter tissue tropism (e.g., SNPs in a

ras-like RagC GTPase enzyme appear to attenuate visceralization by L. donovani’’®) or

283-285,200 286,287

predict susceptibility to drugs such as pentavalent antimonials and miltefosine

Associations established from field and laboratory settings, however, often fail to corroborate
one another’s results. SNPs in the miltefosine transporter LdMT, for example, were

287-290 but

recurrently associated to miltefosine resistance in vitro were not observed in any of

thirty L. donovani isolates taken from patients that relapsed after treatment with miltefosine

in India and Nepal®*!

, suggesting that multiple routes to resistance occur in the field and/or
that in vitro conditions do not accurately model the natural environment. Relatively limited

success to date in identifying SNP and INDEL variants responsible for important phenotypic
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changes may also be attributable to the frequent use of targeted approaches rather than full

genomic scans???

. While targeted approaches (e.g., microarrays or PCR) are commendable in
representing hypothesis-driven science, they are unlikely to detect mutations that transform
phenotypes through pleiotropic or cumulative effects and are generally biased towards

annotated or previously studied genes.

Increasingly accessible WGS data will improve theory on genotype-phenotype interactions as
they are unrestricted by a priori knowledge and can assess multiple adaptive mechanisms
(i.e., gene copy number variation, aneuploidy, SNPs and INDELSs) as well as demographic
patterns across many samples at once (see Section 1.5). Various precautions, however, are
relevant, both in regard to the use of classic population genetic approaches on trypanosomatid

parasites and in handling the massive amounts of data that lay ahead (Section 1.6).
1.4.4 Hybridization in Leishmania spp.

Leishmania parasites can also generate new diversity through genetic exchange. Intra-specific
L. donovani and L. major crosses have between achieved in the sand fly vector by co-infecting
cell lines carrying different fluorescent or drug resistance genes***?*2%_ The drug selection
approach used in both L. major studies allowed the hybrid progeny to be isolated and
characterized. Heterozygosity and ploidy levels were consistent with classical meiosis in most
offspring but several cases of genome-wide triploidy and, less frequently, tetraploidy, also
suggested that the hybridizing parents occasionally failed to initiate or complete meiotic
division®***%*_ Similar rates of diploid and aneuploid hybrid offspring were also produced in
inter-specific crosses between L. infantum and L. major by Romano et al. (2014)**. The
authors went on to infect mice with the hybrid offspring, revealing clear differences in their
abilities to produce dermal lesions or to disseminate and grow in the liver and spleen relative

to parental strains.

Evidence of hybridization and its major impact on Leishmania phenotypes and epidemiology
is also found in the field. Natural hybridization between L. braziliensis and L. peruviana, for
example, has been implicated in the emergence of especially destructive forms of
mucocutaneous disease’””, and natural L. infantum/L. major hybrids, appear to have gained
the ability to infect Phlebotomus papatasi, a widespread Old World sand fly species
previously considered permissive only to L. major'>*?%®. Intra-specific hybridization also
appears to have preceded the widespread expansion of a fixed heterozygous L. tropica

genotype through much of Asia, including Turkey, India and the Middle East?*’.

Only two studies, however, have used WGS to better understand the demographic histories

behind hybrid Leishmania genomes. The first study by Rogers et al. (2014) examined eleven
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vector-isolated Leishmania strains from a focus of cutaneous leishmaniasis in Turkey, and
genome-wide patterns of patchy heterozygosity could be clearly traced back to a single
outcrossing event and a low frequency of inbreeding (1.3 - 10~ meioses per mitosis) among
offspring genotypes such that initial full-chromosome heterozygosity fragmented into shorter
blocks of mixed and non-mixed ancestry over time**®. Phasing haplotypes over heterozygous
loci could also specify L. infantum and an L. donovani-like species as parental strains. The
second study by Cotton et al. (2019) described a more complex history of hybridization within
L. donovani populations of northern Ethiopia, where mixed-strain sand fly infections may be
more common than in the Turkish locality above?*®. Patterns of inheritance indicate that extant
Ethiopian L. donovani hybrids originate from multiple separate initial crossing events, and

that these events were also followed by backcrossing to parents and/or with other hybrid lines.

As the above WGS studies targeted aberrant and/or putatively hybrid populations based on
previous MLST and MLMT??3%_ further WGS surveys are required to clarify how common
and/or influential hybridization events are to genetic structure and diversity at other disease
foci, and in which ecological or demographic circumstances hybridization is most likely to
occur. Many previous marker-based studies have emphasized the presence of high
homozygosity due to endogamic mating (i.e., selfing or inbreeding) and that predominant
clonal evolution governs the population structure of Leishmania strains. Clonality is
undoubtedly the most frequent form of Leishmania reproduction, but above examples
demonstrate that much less common exogamic genetic exchange can be pivotal to parasite
diversity and fitness. Sparse marker panels used in the majority of past studies may have very
often missed other such examples when these did occur and would definitely have been
powerless to distinguish complex hybridization patterns like those described using WGS in

Cotton et al. (2019)%%.

Introduced American L. infantum populations appear especially deserving of WGS studies
with attention to causes and consequences of genetic exchange. Hybridization is often linked
to range expansion in other species, either because it enhances or facilitates survival in the
new environment®’! or because demographic restructuring during the expansion process
connects populations that otherwise rarely meet**>3%, Surprisingly, the first and only two

237.28 chose not to

WGS studies carried out on American L. infantum populations to date
examine genome-wide heterozygosity distributions or even to construct phylogenetic trees in
their efforts to find reasons behind phenotypic differences among strains. As highlighted
above, genetic exchange can transform phenotypes at various levels (permissiveness to
vectors, tissue tropism in hosts), and such analyses would have been first steps into

investigating this possibility in the New World.
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1.5 Advantages and prospects of the genomic age

The potential of WGS to enhance various lines of population genetic research on
trypanosomatid parasites has been touched on throughout this review. Three (intertwined)
advantages can be summarized. These relate to 1) innovative inference from ‘comprehensive’
genotyping, 2) extraordinary (and non-focal) resolving power and 3) potential for cross-

disciplinary integration (highlighting the ‘landscape genomics’ approach).

First, comprehensive genotyping, i.e., genotyping at all genomic loci as opposed to
discontinuous genotyping at selected markers without information on adjacent sequences (as
in MLST, MLMT, microarrays, etc.), offers unprecedented opportunity to reconstruct and
quantify demographic processes behind parasite diversification and extant population
structure, e.g., the frequency and mechanisms of genetic exchange®*. One of the best
examples was just referenced in Section 1.4.4. The landmark study by Rogers et al. (2014)>®
visualized genome-wide mutation patterns to infer the series of mating events leading to
aberrant L. infantum genomes in south-central Turkey, showing how intermittent blocks of
heterozygosity derived from a single hybridization event followed by inbreeding or selfing
among outcrossed strains. The authors then used information relating to the size and
frequency of these blocks and estimates of genome-wide mutational diversity to infer the
relative rates of meiotic and mitotic cell division in the population. The low frequency of
meiosis in Leishmania would have been very difficult to measure in the laboratory or by any
marker-based technique. Another fascinating example is given by Weir et al. (2016)*%. The
authors used comprehensive sequence information to demonstrate strict asexuality in
Trypanosoma brucei gambiense, the genomes of which showed linkage disequilibrium across
all chromosomes, i.e., each genome formed a single linkage group. Accumulation of
mutations on separate, co-evolving haplotypes also showed the Meselson Effect like few
studies in any species have ever achieved, and long tracts of homozygosity suggested gene
conversion as a possible compensatory effect. Apart from continuous genome-wide
information on point mutations, WGS can also distinguish structural rearrangements as a key
source of novelty in parasite genomes. Talavera-Lopez et al. (2018), for example, used long-
read PacBio sequencing to demonstrate that 7. cruzi uses radical, inter-chromosomal
translocations to transform its antigenic repertoire’*. The authors also used genome-wide
linkage scans to identify selective sweeps in important surface molecule gene arrays in
human-isolated parasite genomes (vs. balancing selection in these arrays in vector-isolated
parasite genomes). Scans across continuous genomic sequence can also, for example, quantify

+307,308

the strength of selection at individual loci or detect important (e.g., virulence-

associated®?’) introgressive events.
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The second key virtue relates simply to the enormous sensitivity and resolution of the data-
driven approach. Decreasing costs of WGS enable large sample sizes to be measured at high
sequence read coverage, with no a priori target selection required. The advantages are
manifold. Deep sequencing, for example, creates unprecedented power to detect rare variants,
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e.g., deleterious mutations in important parasite genes’'", minimizing past biases toward
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positively selected traits®*. Next to rare genotypes, WGS also has the power to detect rare

genomes. Trypanosomatid infections, especially those of 7. cruzi, often comprise multiple

clones, not just a single monoclonal strain®!'!731?

, and bioinformatic pipelines (e.g., from
malaria research®'?) applied to high-depth sequencing data can potentially deconvolute
component genomes. Beyond just distinguishing (rare) variants, high depth WGS also
facilitates the precise measurement of variant allele frequencies. Pattern-process modelling of
the site frequency spectrum or its summary statistics can be used to reconstruct various
demographic processes, e.g., past admixture, bottleneck or expansion events®!>3!®. While
approaches to reconstruct demographic history often require information on neutral sequence
variation, other studies may need to filter out such genetic structure, e.g., to identify loci under

selection in sample genomes>!”

. WGS allows for various kinds of data separation post hoc,
e.g., after distinguishing synonymous and non-synonymous mutations based on annotated
codons and genes®”’. Finally, high sequence read coverage also enables detection of
aneuploidy and gene copy number variation simultaneously with SNPs and INDELs, the
importance of which has been elaborated in Section 1.4.3. Chromosome-wide vs. local copy
number changes cannot be differentiated in such detail using other molecular techniques, e.g.,
fluorescence in situ hybridization, relatively sensitive, but very prone to artefacts (Hideo

Imamura, pers. comm.).

There is also great prospect in integrating WGS with other ‘omics’ approaches
(transcriptomics, proteomics, metabolomics, etc.), e.g., to better understand how diverse
phenotypes arise from relatively low genetic diversity and an absence of monocistronic
transcription control, but this integration is only beginning to take form>!®. The integrated
analysis of high-resolution genetic and spatial data, however, is further along and has been
formalized under the term ‘landscape genetics’ — or ‘landscape genomics’ when WGS
technologies are applied. Landscape genetics/genomics is a research field that aims to
explicitly quantify the effects of environmental composition and configuration on genetic
variation with novel spatial statistics®!*?°, As these effects are tested at either the ecological
or the evolutionary scale, distinct data models and dimensions of genetic structure are drawn
into analysis. The ecological focus, set to test landscape effects on dispersal and resultant
demography, assesses genome-wide, neutral genetic structure. Many landscape genetic

studies assess correlations between pairwise measures of genetic dissimilarity and distance-
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based landscape data describing the intervening matrix between sampling sites. This ‘link-
level’ analysis thus often summarizes genetic and spatial data in distance matrices, whereby
associations among component vectors can be evaluated by Mantel statistics, partial
multivariate regression of distance matrices (when multiple explanatory variables are of
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interest) or other matrix-based statistical tests’”’. The evolutionary focus, by contrast,

generally aims to elucidate genotype-by-environment associations (i.e., to detect selection) in
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non-neutral regions of the genome’““. Methods are therefore often ‘node-based’, assessing

correlations between local environmental metrics and allele frequencies without reference to
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landscape that intervenes sampling sites™ . Multivariate statistical methods such as ordination

d*3. Some

by redundancy and canonical correspondence analysis are commonly applie
landscape genetic approaches, however, combine both link- and node-based perspectives to
predict environmentally driven changes to neutral and adaptive genetic structure over time.
This includes landscape genetic simulation modelling, a spatially explicit modelling
technique in which population genetic structure is simulated over a raster of different
environmental conditions. Each individual begins simulation in the raster with a defined
genotype and moves from cell to cell according to hypothesized effects of local and adjacent
cell conditions on survival, dispersal, mating, mutation, etc. The raster can code for multiple
environmental conditions in a landscape of interest (e.g., using remote-sensing data
(elevation, temperature, vegetation cover, etc.) or estimates of host and vector abundance
based on environmental niche models) such that the comparison of simulated population
genetic structure to observed population genetic structure helps test the landscape resistance
or selection hypotheses applied. This pattern-process modelling approach is being pioneered
for conservation purposes (e.g., to predict the effect of reintroductions and hydroelectric
infrastructure on fish diversity and dispersal®**) using simulators such as CDPOP*** and
CDMetaPOP?% but could also help in the understanding and management of parasitic disease.
The idea to summarize hypotheses about environmental effects on genetic structure into a
digital ‘resistance raster’ is especially intriguing for ancient endemic parasites such as 7. cruzi
that are known to disperse through a wide range of environments yet with transmission cycles
tuned by ecological host-fitting!*® and with various conceivable barriers to dispersal or
development (e.g., high altitudes®?’, rivers®?®, desert’®®) as well as anthropogenic influences
such as insecticide-spraying®*’, deforestation®’! and long-distance transportation of infected

vectors and hosts 49332333,
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1.6 Challenges in trypanosomatid population genetics, genomics, and spatial genomics

Built on relatively simple mathematical formulae such as the Hardy-Weinberg Law (which
states the expected heterozygote and homozygote genotype frequencies in a randomly mating
population®*4), it comes to no surprise that a model-based system of inference pervades
population genetic theory and application. Reference to idealized null distributions
perpetuates through all stages of analysis, e.g., from first generation of summary metrics, to
their algorithmic implementation, to data transformation, to the manner in which final results
are instinctively interpreted. For example, Nei’s D, a basic metric of genetic distance, refers
to constant mutation rates among loci. The algorithm behind STRUCTURE?®*’, one of the
most heavily used methods of population assignment, assumes Hardy Weinberg and linkage
equilibrium within clusters as do the popular programs GeneClass, BATWING and BAPS>?°.
Simulation approaches are also inherently model-based. Current CDMetaPOP code, for

example, applies mating as Mendelian sex3?°.

Principal component analysis (PCA),
universally applied for dimension reduction of (genomic) information, also assumes non-
independence (i.e., no linkage) among data points. And perhaps most critical among these
examples — the ever-present Hardy-Weinberg law equates mating to blending inheritance that

restores equilibrium allele frequencies, i.e., HWE.

Although underlying assumptions are not meant to be met at all times, continual violation
makes for trouble. Trypanosomatid parasites such as 7. cruzi and L. infantum, however, seem
to break the rules very often, definitely much more than pea plants do. An apparent mix of
clonality and (perhaps unorthodox) sex make strong linkage and Hardy-Weinberg
disequilibrium pervasive'®. Hardy-Weinberg disequilibrium and linkage in particular risk
distorting population genetic inference because many applications require the use of neutral
loci inherited according to Mendelian laws>?’. Yet there are ways to manage. First, one may
proceed more heuristically and seek methods based on fewer or different assumptions.
Discriminant analysis of principle components**®, for example, offers a non-model based
alternative to STRUCTURE, and recent modifications to classical multivariate ordination
apply linkage information to handle non-independence among markers®*. In a second (more
ideal) approach, one may develop new analyses based on the models of demography and
evolution that most likely apply. Regarding the frequency and mechanism of sex in 7. cruzi,
these a priori hypotheses for analyses may soon become more tenable as resolutions from
genomic sequencing and further experimental studies clarify theory on reproductive mode. In
a third approach, also promoted by today’s sequencing power, the effects of aberrant genetic
properties on existing metrics and models may be quantified through rigorous comparative
analyses to explicitly recalibrate past and present inference. Lastly, genomic data sets may be

partitioned and filtered ad hoc to accommodate statistical assumptions. For example,

51



measures or multi-collinearity or eigen analysis may be used to omit loci, and DNA segments

may be screened individually with tests for HWE3#0-342,

As previously mentioned, multi-clonality (co-infection by multiple intra-specific strains)
presents another biological feature of T. cruzi'>®>'%%3113% (and to a lesser extent of L.
infantum>**) that can severely mislead inference if overlooked. When WGS reads from a
multiclonal sample are mistaken to represent those from a single clone, point mutations in the
genome of this supposed clone may appear to be abundant whereas structural diversity may
appear to be low (signs of trisomy in the form of unbalanced (33% and 67%) allele counts,
multiallelism or chromosome-wide elevation in read depth, for example, could be obscured
by mosaic aneuploidy (see Section 1.4.3) among cells). Questions relating to individual
genotypes (e.g., relationships between multi-locus genotypes and environment) or
interactions between individual clones (e.g., genetic exchange) will thus be difficult to solve.
Fortunately, as mixed infections are ubiquitous among micro-pathogen taxa*®, a variety of

statistics established in other study systems?®!434¢

can help disentangle component genotypes
from multi-clonal infections by trypanosomatid parasites. These bioinformatic solutions,
however, involve a margin of error and will not suffice for all objectives, e.g., to provide
definitive proof of genetic exchange among individual clones. Fortunately, 7. cruzi and L.
infantum are relatively amenable to long-term culture (in contrast to, e.g., Plasmodium
vivax**"). Incorporating methods such as fluorescence-activated cell sorting (FACS), single-
cell microfluidic partitioning (e.g., 10x Genomics), biological cloning by limiting dilution or

plating on solid media®®>*!

, Individual cells or monoclonal strains can be separated from
multiclonal samples prior to sequencing. It is important to consider, however, that all forms
of parasite culture and micromanipulation risk selection bias. The best course of action, i.e.,
how much laboratory handling vs. bioinformatic sequence separation is best applied will
depend on the study objective and the sensitivity of analyses to multiclonality or
representative sampling. Some studies might even require culture-free approaches, e.g., using
probe-based target enrichment or selective whole-genome amplification from the infection
source. Some such methods (e.g., based on spliced leader trapping®*® or SureSelect

technology*’) have been established for Leishmania but are not yet described in T. cruzi

research.

Another important challenge in WGS-based (trypanosomatid) studies relates to read-mapping
error and thus, artefactual variance in sequence composition and depth. No matter whether
based on hash tables (e.g., Stampy>® or SMALT?!) or suffix arrays (e.g., Bowtie**? or
BWA3%%), alignment programs cannot correctly map short (i.e., Illumina) reads when these
represent substrings of sequences that occur in many similar homologs throughout a reference

genome. Such sequences are highly abundant in 7. cruzi, especially in its surface molecule-

52



encoding tandem gene arrays’’**. Mis-mapping in these areas leads to artefactual point
mutations, and these can confound metrics of linkage, and ratios of coding vs. noncoding
mutation or purifying vs. diversifying selection, etc. Spikes in read depth also occur and can
be misinterpreted as local copy number change. Unless long-read (e.g, PacBio or Oxford
Nanopore) technologies are applied, this mapping problem can only be circumnavigated by
omitting (‘masking’) unreliable regions from analysis. Identification of these regions is
possible by self-blasting and virtual read alignment strategies or by identifying genetic areas
where different mapping and variant-calling programs produce inconsistent results. Regions
where all sample genomes show unexpected sequence or structural aberrations may also
reflect systematic error. Ideally, sequences from a control sample (e.g., a reference strain such
as Tcl-Sylvio or JPCMS5) can be obtained to confirm masking decisions and calibrate settings

in various other bioinformatic steps.

Spurious associations are another major concern in data-heavy WGS, especially when
analyses integrate additional data types, e.g., in search of correlations between gene dosage
and phenotype (i.e., GWAS) or between population genetic differentiation and environmental
variation measured using high-resolution, remote-sensing techniques. Various statistical
methods help correct for extreme multiplicity in testing®**, reduce collinearities*>*, control for
neutral structure or detect outlier effects®37342336-360 byt other issues are not so easily cleared
post hoc. In landscape genomic studies, for example, spatial change in environmental
variables of interest can coincide with demographic movements (e.g., altitudinal or humidity
gradients can coincide with expansion axes of an introduced species) and contemporary
(observed) population structure may be governed by historic (unmeasured) conditions and
events (e.g., past land-use change, vector intervention, species introduction, etc.)**!*2, High
prudence in scientific approach and sampling design is therefore at least as important as are
later decisions on data filtering and statistical controls. Although studies using next-
generation sequencing/sensing technologies are in part so powerful because no a priori target
selection is required, this release from hypothesis-driven target selection should not encourage
a departure from hypothesis-driven science. It is important to formulate expectations before
beginning any high-throughput analysis, and also long prior to the computational stage.
Deliberate study site selection, spatial configuration and intensity of sampling is essential for

unbiased, meaningful inference’¢?-366

and must base on sound hypotheses or knowledge of
the study environment (e.g., historic disturbances, cryptic barriers and patterns of
environmental values — linear, modal, random, etc.) and ecology of the study organism>®.
Regarding vector-borne parasites, this latter condition is not easily met, as parasite gene flow
depends not only on the intrinsic biological properties of the parasite (e.g., reproductive

mechanism, ability to infect certain taxa, virulence, etc.) but on a factorial of host and vector
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traits (abundance, lifespan, dispersal patterns, etc.)*®’. This trait space determines the degree
of contact and transmissivity among hosts and vectors and therefore modulates parasite
population structure and genetic connectivity in the landscape. Parasite population structure
may range from highly segregated and metapopulational, with little or no gene flow to (or
absence of infections at) nearby sampling locations to relatively continuously distributed, with
genetic similarity fading as a function of geographic distance®®®. Like most vector-borne
parasite species, 7. cruzi populations conceivably place towards the metapopulational end of

t143

this spectrum given that stercorarian host infection is highly inefficient’* and ecological host-

fitting (e.g., separate terrestrial and arboreal niches) is observed at the landscape scale'®.

130

Nevertheless, transmission cycles can contain a high abundance of hosts’”® and may

increasingly overlap®®’

if interactions between generalist hosts and vectors increase (e.g., in
areas disturbed by deforestation or climate change). Genetic connectivity may also be
enhanced by non-vectorial*’® transmission and long-range synanthropic dispersal routes'®.
Population structure is thus likely less patchy than that of L. infantum in sylvatic or rural
landscapes of the New World. L. infantum host diversity appears to be much less extensive
and only domestic dogs are considered primary reservoir hosts'®’. Genetic connectivity may
be high within urban regions but not in other environments or at larger scales. Effects of recent

I7.18 "also human migrations?***"!, have also likely been

parasite bottlenecks and expansions
pivotal to L. infantum population structure in the non-endemic range. It is important that such

hypotheses contribute to spatial study design.
1.7 Research chapter synopsis

Several fundamentals of 7. cruzi and L. infantum biology and epidemiology described in the
above literature review have yet to be solved. The extent of genetic recombination occurring
within natural 7" cruzi infections (see Section 1.3.7), for example, remains unknown. Mating
by polyploidization has been observed in vitro but does not reconcile with allele frequency
and somy patterns observed in the field. Inference from the field, however, often remains
inconclusive due to low-resolution genotyping of uncloned, potentially mixed-strain isolates
sampled at inappropriate scales, e.g., across disparate transmission cycles or from different
points in time. Chapter 2 therefore uses plate-cloning to establish monoclonal 7. cruzi cultures
from recent vector/host captures at a single transmission focus in southern Ecuador, then
examines nucleotide and copy number variation in the sequenced genomes to identify
reproductive mechanisms and quantify possible events of genetic exchange. Clones are also
subcloned and re-sequenced after cryopreservation to assess karyotypic plasticity and

mosaicism as evidence for/against initial hypotheses of parasexual aneuploidy in the dataset.
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Another major open question relates to much larger spatial patterns — the distribution of L.
infantum diversity throughout Brazil and relationships to source populations in the Old World
(see Section 1.4.2). American L. infantum populations are likely to have undergone significant
macrogeographic restructuring in the course of recent importation and expansion into the New
World. Distinct transmission ecology (e.g., use of Lutzomyia vectors, more restricted host
range, etc.) may also have elicited significant adaptive genetic change. Microsatellite
approaches have adumbrated complex population structure in these populations but are of
little help in clarifying drivers of non-neutral genetic variation and important clinical features
of disease (e.g., miltefosine resistance) observed in Brazil. Chapter 3 therefore uses WGS
reads from 126 New and Old World L. infantum strains to reconstruct invasion history and
possible adaptive processes occurring in the introduced range. A wide variety of genomic
methods (copy number analyses, simulation modelling, etc.) as well as phenotypic tests are
employed. Special emphasis is placed on hypotheses of neutral vs. selected copy number
variation at a recently identified miltefosine sensitivity locus, associated enzymatic activity,
and alternative metabolic paths. Sample size and distribution represented limiting factors in
both Chapters 2 and 3 because inefficient parasite ‘isolation-by-culture’ restrained the extent

to which hypothesis-driven spatial sampling could be optimized (see Section 1.6).

Chapter 4 therefore develops a ‘genome-wide locus sequence typing’ (GLST) tool to
summarize parasite genetic polymorphism at low cost and without cell purification and
culturing steps. Loss of parasite diversity in vitro is a significant concern in trypanosomatid
research but few such methods have been developed to extract genome-wide trypanosomatid

sequence information from uncultured sample types.

Inspired in part by the prospect of rapidly surveying parasite diversity across landscapes using
tools like GLST, Chapter 5 constructs a new landscape genomic framework for the prediction
and prevention of vector-borne disease. The framework proposes landscape genetic
simulation modelling (see Section 1.5) on a composite resistance raster that integrates
hypothesized effects of host and vector activity on parasite dispersal pathways in the
landscape. Chapter 2’s Chagas disease study system in Ecuador is used to walk readers

through different principles and methodological steps.

Key findings, limitations and possibilities of follow-up to the four research chapters are

discussed in Chapter 6.
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2.1 Abstract

Genetic exchange enables parasites to rapidly transform disease phenotypes and exploit new
host populations. Trypanosoma cruzi, the parasitic agent of Chagas disease and a public
health concern throughout Latin America, has for decades been presumed to exchange
genetic material rarely and without classic meiotic sex. We present compelling evidence
from 45 genomes sequenced from southern Ecuador that 7. cruzi in fact maintains truly
sexual, panmictic groups that can occur alongside others that remain highly clonal after past
hybridization events. These groups with divergent reproductive strategies appear genetically
isolated despite possible co-occurrence in vectors and hosts. We propose biological
explanations for the fine-scale disconnectivity we observe and discuss the epidemiological
consequences of flexible reproductive modes. Our study reinvigorates the hunt for the site
of genetic exchange in the 7. cruzi life cycle, provides new tools to define the genetic
determinants of parasite virulence, and reforms longstanding theory on clonality in

trypanosomatid parasites.
2.2 Introduction

Trypanosoma cruzi is a kinetoplastid parasite and the causative agent of Chagas disease in
Latin America, where ca. six million people are currently infected'. Mucosal or abrasion
contact with the infected feces of hematophagous triatomines constitutes the primary mode
of T. cruzi transmission. Infection with 7. cruzi results in chronic Chagas disease in 30 —
40% of cases, characterized by a spectrum of fatal cardiac and intestinal pathologies. Early-
stage acute Chagas disease can also be fatal, especially among infants and in orally
transmitted outbreaks of the disease®’?. T. cruzi transmission is a zoonosis maintained by

numerous species of triatomine insects and hundreds of different species of mammals®”>.

The Trypanosomatidae, the family to which 7. cruzi belongs, is a monophyletic group of
obligate parasites and includes several species of medical and veterinary importance — e.g.,
Trypanosoma brucei ssp., Leishmania spp., Trypanosoma vivax and Trypanosoma
congolense’™. The Trypanosomatidae are early branching eukaryotes in evolutionary terms
and share many biological characteristics, including the process of U-indel RNA editing in
the kinetoplast®”® and polycistronic transcription control’’®. Despite their basal status, the
Trypanosomatidae possess much of the core meiotic machinery of higher eukaryotes®””.
However, the extent to which such machinery might actually support genetic exchange
within trypanosomatid species has been slow to come to light®. Establishing the occurrence
of regular meiotic recombination in 7. b. brucei has taken decades of laboratory and field
research; not until 2014 was haploid gamete production (coincident to peak meiosis-specific

gene expression) confirmed by fluorescence microscopy as a normal phase of development
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in the vector’s salivary gland®*’® %%, More recently, genome-scale signatures of meiosis have
also been detected in T. congolense'®">'33. In contrast, robust genomic evidence now suggests
that the human-infective T. b. gambiense subspecies is completely asexual®®. Life histories
in Leishmania seem no less complex. Despite a clear propensity for mitotic clonality,
sporadic sexual hybrid formation appears to underlie important diversification events both

within and between species??>8!

, and meiotic offspring are readily produced in laboratory
crosses®**32. An alternation of clonal and sexual, endogamic reproduction has also been

proposed to define population genetic structure in the Viannia complex>®3.

T. cruzi is the last of the Tritryps (Leishmania spp., T. brucei ssp. and T. cruzi) for which the
extent and mechanism of genetic exchange remains to be fully elucidated. Limited evidence

for genetic recombination has been observed in the field!”%!7

although inappropriate study
designs, genetic marker systems of insufficient resolution, and low genetic diversity in study
populations have all hampered interpretation of the data®. Furthermore, the parasexual
mechanism of genetic exchange proposed for 7. cruzi based on a single experimental cross
— one of whole-genome fusion followed by stochastic chromosomal decay and return to

171

diploidy' " — has been irreconcilable with patterns of somy and genetic diversity observed in

natural populations'’*174384 This lack of clarity has lead some to propose T. cruzi as a

)16,162

paradigm for Predominant Clonal Evolution (PCE in parasitic protozoa —an idea which

may not reflect biological reality.

To address this fundamental knowledge gap in the biology of trypanosomatids, in this study
we generate whole-genome sequence data from 45 7. cruzi Discrete Typing Unit I clones,
as well as several non-cloned 7. cruzi strains, collected from triatomine vectors and
mammalian hosts in an endemic transmission focus in Loja Province, southern Ecuador.

After mapping sequences against a recent PacBio sequence assembly>%

, we explore patterns
of population structure and genetic recombination. Our data reveal that 7. cruzi does indeed
reproduce sexually at high frequency via a mechanism consistent with classic meiosis.
However, we demonstrate that parasite groups with radically distinct reproductive modes
also co-occur at the same transmission focus. As the last medically important trypanosome
for which meiosis has not yet been demonstrated in lab or field, our data on 7. cruzi make a
significant contribution towards the consolidation of current theories around genetic

exchange in the Trypanosomatidae.
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2.3 Methods
2.3.1 Parasite collection and cloning

Trypanosomes were isolated from triatomines (Rhodnius ecuadoriensis, Panstrongylus
chinai, P. rufotuberculatus, and Triatoma carrioni), rodents (Rhipidomys leucodactylus,
Sciurus stramineus) and bats (Artibeus fraterculus) captured between 2011 and 2015 in
eastern Loja Province, Ecuador. Capture coordinates, dates and ecotypes (i.e., domestic,
peri-domestic or sylvatic) are provided in Supplementary Tbl. 2.1 and associated protocols
are detailed in previous studies led by the Center for Research on Health in Latin America
(CISeAL)*®. Individual parasite cells were cloned on solid medium to derive single-strain
colonies following Yeo et al. (2007)*%. Briefly, aliquots of 10? — 10° epimastigote cells were
mixed with 36 °C (molten) low melting point agarose and distributed over supplemented
blood agar for stationary colony formation on petri dishes with the addition of 5% CO at 28
°C for ca. three months. Successful microcolonies were then expanded in biphasic Novy-
MacNeal-Nicolle (NNN) and liver infusion tryptose (LIT) media. Complementary to 19 non-
cloned primary cultures, this process yielded 64 axenic monocultures for subsequent DNA

extraction and sequencing.
2.3.2 DNA sequencing and variant discovery

Genomic DNA was extracted from 83 7. cruzi cultures by isopropanol precipitation (great
thanks to Jalil Maiguashca for completing this step). DNA was sonicated and size-selected
(median insert size = 198 nt; median absolute deviation = 69 nt) by covalent binding prior
to paired-end sequencing on the Illumina HiSeq 2500 platform. To guide variant discovery
from resultant 125 nt sequence reads, we optimized reference-mapping and SNP-calling
pipelines using paired-end Illumina reads (kindly provided by Carlos Talavera-Lopez,
SciLifeLab, Sweden) for 7. cruzi Tcl X10/1 (termed Tcl-Sylvio elsewhere in the text)
against the newly available PacBio sequence for the same reference strain’°®. Based on
comparisons with Tcl-Sylvio mapping results from various configurations in SMALT
v0.7.4%" (we tested 12 — 14 kmer hash indexes and 2 — 8 base skip sizes), we chose to map
samples using default settings (gap-open penalty = 6 and mismatch penalty = 4) in BWA-
mem v0.7.3°>3, We then sorted alignments with SAMtools v0.1.18%%7 marked PCR-
duplicates with Picard v1.85%® and identified single-nucleotide polymorphisms (SNPs) by
local re-assembly with Genome Analysis Toolkit (GATK) v3.7.0%° (also benchmarked for
L. donovani®®). Individual records produced by the HaplotypeCaller algorithm were
subsequently merged for population-based genotype and likelihood assignment (GATK
GenotypeGVCFs). Next, we calibrated variant filters by incrementally tightening thresholds
for genotype quality (Q), read-depth (D) and local polymorphism density (C) until non-
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reference homozygous SNP-calls for TcI-Sylvio reached asymptotic decay. We then applied
a virtual mappability (V) mask to exclude variant-calls in unreliable mapping areas of the
reference genome. Specifically, we generated synthetic, non-overlapping 125 nt sequence
reads from the PacBio assembly and mapped these back to itself with the Genomic Multi-

3% Only variants from areas with perfect, i.e., singleton (V = 1), synthetic

tool software suite
mapping coverage were kept for analysis. These regions represented areas of low sequence
complexity and/or redundancy and made up large fractions of all reference chromosomes.
With the above filters in place (Q > 1,500; 10 > D < 100; C < 3 SNPs per 10 nt; V = 1),
samples retained tens of thousands of homozygous variant loci, whereas Tcl-Sylvio [llumina
vs. Tcl-Sylvio PacBio showed just 58. Nevertheless, the guide-sample presented ca. 20,000
small insertions and ca. 1,000 small deletions relative to the reference. We placed an
additional mask £3 nt around these positions to avoid potential faults in the published
genome. Final masking thus disqualified a total of 24 Mb (including all of chromosomes 17,
40 and 47) from polymorphism analysis. This highly conservative, diagnostic variant-
screening approach also led us to exclude 24 low-depth samples for which genotypes could
not be assigned at more than 40% variant sites. The final set of SNPs (in 59 samples) were

annotated with snpEff v4.3t*! using the Tcl-Sylvio annotation file at TriTrypDB
(http://tritrypdb.org/common/downloads/release-34/TcruziSylvioX10-1/gff/data).

2.3.3 Computational phasing of heterozygous SNP sites

Heterozygous SNP sites were phased over 30 iterations in BEAGLE v4.1°2. The algorithm
also imputes missing genotypes from identity-by-state segments found in the data. For
haplotype co-ancestry and general comparative analysis, we restricted imputation to sites
containing information for > 60% samples. Later, in windowed phylogenetic comparison,
however, we refrained from genotype imputation, i.e., used only sites with genotypes called

in all individuals of the dataset.
2.3.4 Detection of population genetic substructure

We used the Neighbor-Net algorithm in SplitsTree v4°! to visualize genome-wide
phylogenetic relationships among samples in split network representation. Neighbor-Net
extends Satou and Nei’s neighbor-joining algorithm to accommodate evolutionary processes
such as recombination and hybridization that lead to non-treelike patterns of inheritance. We
also optimized a general time-reversible (GTR) substitution model with ascertainment bias
correction (for accurate branch lengths in the absence of constant sites) to construct
phylogenies from proportions of non-shared alleles, i.e., considering two haplotypes per
variant site. Haplotype concatenations were also used to derive a minimum-spanning

network, the set of edges that links nodes (individuals) by the shortest possible cumulative
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distance (i.e., maximum-parsimony). We inferred genetic subdivisions in the sample-set by
unsupervised k-means clustering and discriminant analysis of principle components
(DAPC)**. These analyses applied genetic distances as the proportion of non-shared
genotypes at all variant loci (i.e., considering variants at the genotypic level), as did
Neighbor-Net and subsequent measurements of Fsr. After phasing heterozygous SNP sites
(see above), we used fineSTRUCTURE v2.0.4**° to recover traces of identity-by-descent in
similar haplotypes. This program was recently used to expose hybridization events in

81 as well as to disentangle reticulate ancestries in the closely-

congeneric T. congolense'
related L. donovani complex?®. Its Chromopainter algorithm constructs a semi-parametric
summarization of co-ancestry among all pairs of individuals based on variable rates of
haplotype-sharing and linkage disequilibrium across sample genomes. We applied
fineSTRUCTURE over a uniform recombination map, running 6 - 10> Markov chain Monte
Carlo (MCMC) iterations (1 - 10° iterations burn-in) and 4 - 10°> maximization steps in the
final tree-building step. Following indications of mosaic inheritance in these analyses, we
assessed phylogenetic (dis)continuity by comparing genotype-trees built for individual
chromosomes using neighbor-joining as implemented in the ‘ape’ package v5.0°”* in R
v3.4.13%*. We also built distance matrices based on haplotypes phased without imputation

(see previous section) to quantify changes in genetic similarity between windows within

chromosomes.
2.3.5 Analyses of population genetic diversity and linkage

To assess group-level genetic diversity, we calculated site-wise nucleotide diversity (m),
Watterson’s theta (0) and Fis using the ‘hierfstat’ package v0.04-223%° in R v3.4.1°%*, Fis
values rate heterozygosity observed within and between individuals, varying between -1 (all
loci heterozygous for the same alleles) and 1 (all loci homozygous for different alleles).
Values at 0 indicate Hardy-Weinberg equilibrium. We also measured rates of shared and
private allele use (e.g., proportions of fixed heterozygous and singleton sites), assessed
variant neutrality based on Tajima’s D, quantified haplotype diversity by counting unique
haplotypes per 10 — 100 kb, and scanned for long runs of homozygosity using VCFtools
v0.1.13%%. To determine linkage patterns within chromosomes 1, 5, 21 and 26 (the genome’s
best-mappable chromosomes) we recoded sample genotypes with values of 0, 1 or 2 to
represent the number of non-reference alleles at each variant site. After filtering out all SNP-
pairs separated by masked sequence (in effect, confining analysis to sites separated by < 100
kb), we measured linkage (r?) as the correlation between genotypic allele counts and then
binned r? into distance classes (from 0 to 100 kb in increments of 2 kb) to visualize
relationships between map distance and linkage disequilibrium in R v3.4.13* These

analyses were also run separately on core sequence areas, as defined by areas of synteny
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among Tcl-Sylvio, T. b. brucei and L. major annotated at http://tritrypdb.org. Intra-
haplotypic recombination is unlikely to accompany meiotic crossover events in these areas
of the genome®”. Furthermore, we considered the extent to which our multiple-clone
sampling strategy (chosen to avoid underrepresentation of SNP linkage (or diversity) within
infections might affect sample independence and variance-based statistical results. Linkage
decay plots and other diversity metrics above were therefore also repeated using only one

clone per infection source.
2.3.6 Estimation of meiotic vs. mitotic division

Following methods established to quantify complex microbial life cycles®’, we inferred the
frequency of sex and clonality in 7. cruzi isolates by comparing two different estimates of
effective population size. The first estimate, Ny, is based on recombinational diversity
observed in the sample. N, represents the number of cells derived from mating, i.e., the
number of zygotes present in the population, and is calculated as p / 4r (1 - F), where p
denotes nucleotide covariation between sites, r denotes rate of recombination per bp per
generation, and F represents Wright’s inbreeding coefficient. The second estimate, N, is
based on mutational diversity observed in the sample. Ny represents the total population size,
i.e., the number of cells irrespective of sexual or mitotic origin, and is calculated as 0 (1 +
F) / 4p, where 0 denotes nucleotide variation at single sites and p denotes the rate of mutation
per bp per generation. N, / Ng thus quantifies the frequency of meiotic reproduction in the
population. To estimate this quotient from our sample, we derived 6 from Watterson’s
estimator at non-coding sites and derived p based on reversible-jump MCMC likelihood
curves generated by the interval program in LDhat v2.1°%%, We used 1 - 10’ MCMC iterations
with 2,000 updates between samples and block penalties set to five. We estimated r from the
equation r=0.043 - S1*1%and p from the equation p=2.5866 - 10! - %% These regression
models were developed in Rogers et al. (2014)*® based on the observation that genome size
(S) correlates strongly to rates of recombination and mutation in unicellular eukaryotes. We
validated p estimates by simulating input for LDhat in two ways. First, we created sequence
alignment maps for ten non-recombinant individuals based on observed genotypes using
BAMSurgeon v1.0.0°*°. Maps were set up for each individual by inserting fixed
polymorphisms from the true sample set into Tcl-Sylvio sequence reads, then spiking in
random mutations at rates corresponding to the average number of pairwise differences in
the observed data. Individual SNP records for the ten mutant alignment files were then
compiled and merged in GATK as outlined above. In the second approach, we used
fastsimcoal2 v2.5.23!° to simulate ten non-recombinant and ten recombinant genotypes,
applying r and p from above equations to an effective population of 100,000 diploid

individuals under a finite-sites model of evolution for chromosome 1. We also visualized
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linkage patterns by measuring taxon topology weightings in windowed analysis. Taxon
topology weightings provide a means to clarify phylogenetic structure by summarizing the
extent to which tree topologies for a subset of samples contribute to the topology of the full

tree00

. We applied this concept to neighbor-joining trees constructed for overlapping 50 kb
sequence windows in PhyML v3.1%%!, Topology weightings were calculated and plotted
across chromosomes with loess smoothing (span = 0.125) using scripts provided at GitHub
repository https://github.com/simonhmartin/twisst. These analyses prompted further

0402

sequence visualizations with Artemis v16.0. genome browser tool.

2.3.7 Chromosomal somy analysis

To estimate somy levels for each sample, we first measured mean-read-depth for successive
1 kb windows spanning each chromosome using default options of the ‘depth’ function from
SAMtools v0.1.18%7. We then calculated the median of these windowed-depth-means (m),
i.e., a median-of-means (M), for each chromosome. After testing at various distribution
points, we let the 30" percentile (p30) of (skewed) M values represent expectations for the
disomic state, estimating copy number for each chromosome by dividing its Mm by the
sample’s p30 value and multiplying by two. This procedure produced estimates of disomy
for all chromosomes of the TclI-Sylvio guide-sample and outperformed techniques based on
different window-sizes as well as those refined according to sequence annotation (e.g., only
single-copy genes) or mapping quality (data not shown). We validated cases of chromosomal
copy number variation by plotting kernel densities of window-based somy estimates (i.e.,
density distributions of 2 - m / p30 of M calculated from each window), as well as by
assessing raw depth and alternate allele frequencies across variant sites. True, whole-
chromosomal trisomy, for example, should translate to chromosome-wide elevations in read-
depth and reductions in minor allele contributions to ca. 33% (i.e., one ‘A’ and two ‘B’
alleles — and, in cases of tri-allelism, one of each ‘A’, ‘B’ and ‘C’ alleles) at all heterozygous
(i.e., “‘A/B/B’ or ‘A/B/C’) sites. Intra-chromosomal amplification, in contrast, should create
local shifts in read-depth and allelic composition within chromosomes. In follow-up
assessment of temporal and sub-clonal ploidy variation, we re-sequenced three clones and
derivative subclones on the Illumina NextSeq 500 platform. Subclones were obtained using
the limiting dilution method as described in Messenger et al. (2015) (section 3.2.3)°%. Briefly,
logarithmic phase cell cultures were diluted to 50 parasites/ml in Roswell Park Memorial
Institute (RPMI) 1640 medium, then divided into 200 pl aliquots across multiple 96-
microwell plates. Wells presenting individual cells were incubated at 28 °C for ca. 6 weeks
and further expanded in LIT. Subcloning work was performed by Jaime Costales and Jalil

Maiguashca at CISeAL.
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2.4 Results
2.4.1 Extensive genetic divergence between sympatric parasites

Paired-end sequence reads from 45 single-clone and 14 non-cloned 7. cruzi cultures aligned
to the reference assembly (7. cruzi Tcl X10/1 Sylvio) at a mean depth of 27x, ranging
between 13 and 64x (Supplementary Tbl. 2.1). The 7. cruzi genome is highly repetitive,
especially in the sub-telomeric regions®®. Extensive optimization of variant filtration and
masking was therefore undertaken before a total of 206,619 SNP sites could be robustly
identified against the reference (see Methods). Including only single-clone 7. cruzi cultures
founded from individual parasites in the laboratory, 130,996 SNP sites were identified that
clearly separated our samples into two highly distinct phylogenetic clusters within the small
study area (Fig. 2.1, Supplementary Fig. 2.1, Supplementary Tbl. 2.1). Cluster 1 contained
15 of 17 clones isolated from triatomine vectors and mammal hosts captured in the
community of Bella Maria. Cluster 2 contained 2 clones from Bella Maria, 11 clones from
nearby Ardanza (ca. 7 km south), as well as 3 clones from Gerinoma and 12 from El Huayco
study sites ca. 35 km northwest of Bella Maria. Two clones from Santa Rita (near El Huayco)
associated to Cluster 1. Unsupervised k-means clustering further confirmed two major
clusters (i.e., k = 2) among the samples, although mild improvements to model fit continued

through to k = 6 (Supplementary Fig. 2.2).

To further detail parasite population genetic substructure within and across potentially
multiclonal infections (multiple clones were often sampled from a single vector/host
individual — see clone ID prefixes), we reconstructed each phased genome as a mosaic of
haplo-segments sharing ancestry with other samples of the dataset**°. In the resultant co-
ancestry matrix (Fig. 2.2), which also includes isolates that had not been subject to solid-
phase cloning, intensity of haplotype-sharing (see color scale) increased within both clusters
relative to the spatial origin of each clone, with the exception of TCQ 3087 (sampled in
Bella Maria but associated to Cluster 2) and TRT 3949 clones (sampled near El Huayco,

but associated to Cluster 1).

Importantly, four non-cloned samples (TBM 3131 MIX, TBR 4307 MIX and
TRT 4082 MIX, cultured from the triatomine species Rhodnius ecuadoriensis, and
MBC 1529 MIX, cultured from the rodent species Sciurus stramineus) showed shared
ancestry across Clusters 1 and 2. Clones derived from the same strains did not show shared
ancestry. These data may indicate the presence of multiclonal infections in which parasites

from these distinct groups co-occur in the same vectors and hosts (Supplementary Tbl. 2.1).
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Figure 2.1 Phylogenomic relationships among T. cruzi | clones from southern Ecuador. a Data are
represented as a split network by the Neighbor-Net algorithm?!. Pairwise genetic distances are
defined as the proportion of non-shared genotypes across all biallelic SNP sites for which genotypes
are called in > 40 individuals (n = 68,449). Arrow (and flash) indicate a strong, unambiguous break
in gene flow between two reticulate assemblages, Cluster 1 (green) and Cluster 2 (blue). Though
non-treelike phylogenetic models are better suited to the data, a maximum-likelihood tree is also
provided for comparison in Supplementary Fig. 2.1. b A minimum-spanning network*%3 further
illustrates the genetic disconnectivity between Clusters 1 and 2. Multi-furcating nodes are arranged
such that cumulative edge distance is minimized among samples. Pairwise genetic distances are
haplotype-based, defined as the proportion of non-shared alleles across all SNP sites for which
genotypes are called for all individuals (n = 7,392). ¢ Sampling regions in Loja Province, Ecuador,
are abbreviated as BM (Bella Maria), AR (Ardanza), EH (El Huayco), SR (Santa Rita) and GE
(Gerinoma). Point sizes correspond to sample sizes and colors correspond to cluster membership.
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Figure 2.2 Haplotype co-ancestry among T. cruzi | clones from southern Ecuador. The heatmap of
co-ancestry is based on a sorted haplotype co-ancestry matrix xij, which estimates the number of
discrete segments of genome i that are most closely related to the corresponding segment of genome
j- These nearest-neighbor relationships from fineSTRUCTURES3% analysis are sorted such that
samples clustered along the diagonal are those that most share recent genealogical events and
pairwise comparisons outside of the diagonal indicate levels of genetic connectivity among these
clusters. The matrix also includes ‘genomes’ of non-cloned T. cruzi cultures. Strong horizontal
banding points to the accumulation of diversity from throughout the dataset in four of these original
infections. Cell color represents the frequency of nearest-neighbor relationships for each sample
pair, increasing from yellow (2) through red (68) and pink (134) to black (200). Four anomalous
(outlier) samples are described further on in main text. Analysis uses 110,326 phased SNP sites.
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2.4.2 Sympatric Mendelian and non-Mendelian genetic traits

To explore eco-evolutionary processes potentially underpinning sympatric divergence in 7.
cruzi, we established key metrics of population genetic structure at different sites. Among
the 15 Bella Maria clones of Cluster 1, allele frequencies at variable loci matched those
predicted for random mating, with estimated inbreeding coefficients predominantly near
zero (X =-0.11, o = 0.38; Supplementary Fig. 2.3) and 87,600 of 96,691 (91%) variant loci
meeting expectations for Hardy-Weinberg equilibrium (Tbl. 2.1). Heterozygosity was
unevenly distributed across each chromosome (see below), fixed at only 4% (2,134 / 58,102)
polymorphic sites (Tbl. 2.1) and often interrupted by long runs (> 100 kb) of homozygosity
(Supplementary Tbl. 2.2). Patterns of allelic diversity in Cluster 2 groups were highly
distinct to those observed in Cluster 1. In El Huayco and Ardanza, departures from Hardy-
Weinberg equilibrium were noted at 42% and 46% of total polymorphic sites (Tbl. 2.1).
High levels of heterozygosity (Supplementary Fig. 2.3) extended continuously across all
chromosomes (see below). Seventy-six per cent (44,945 / 58,980) of heterozygous loci
occurred as fixed SNPs within El Huayco and 78% (45,287 / 58,392) occurred as such in
Ardanza. Unlike in Bella Maria, long runs of homozygosity occurred in just two of 23
samples (1 instance each) in El Huayco and Ardanza (Supplementary Tbl. 2.2). Analysis
repeated with only one random clone per vector/host showed the same strong contrasts
between Clusters 1 and 2, but low sample sizes restricted significance tests (Supplementary

Tbl. 2.3, Supplementary Fig. 2.4).

Table 2.1 Population genetic descriptive metrics for T. cruzi | clones from Bella Maria (Cluster 1), El
Huayco and Ardanza (Cluster 2). Please see Supplementary Tbl. 2.3 for analogous results from
analysis repeated with only one parasite clone per vector/host. Abbreviations: PS (polymorphic
sites); 1 (median nucleotide diversity, per site); 8 (median Watterson estimator, per site); MAF
(within-group minor allele frequency); PRS (private sites); SS (singleton sites); HWE (Hardy-
Weinberg equilibrium); HS (heterozygous sites).

Group(n) PS  m ° MAFI,=S>a(:.05 (vs. BM. F ESH /AR) SS fﬁvié' HS F:-)l(gd
Bella Maria (15) 96691 0.09  0.001 48% 0/40177/40262 14013 87500 58102 2134
ElHuayco (12) 80052 0.15  0.001 70% 23538/0/18016 4525 33980 58980 44945
Ardanza (11) 78325 0.6  0.001 71% 21896/16289/0 6064 35799 58302 45287

As well as extreme differences in the frequency and genomic distribution of heterozygous
sites, other features of allelic diversity also diverged starkly among our sympatric study
groups. Sliding window analyses of haplotype-sharing among individuals revealed, on
average, much larger contiguous blocks of shared identity among samples from El Huayco

and Ardanza (Cluster 2) than Bella Maria (Cluster 1) (Supplementary Fig. 2.5) despite lower
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nucleotide diversity () in the latter group (Tbl. 2.1). Short blocks of shared identity among
samples could be consistent with meiotic recombination in Bella Maria and we undertook

further analyses to establish if this was the case.
2.4.3 Linkage decay and rates of meiotic recombination

In sexually recombining organisms, pairwise SNP-associations (r?) are predicted to decay
with map distance due to crossover that occurs between homologous chromosomes during
meiosis. We plotted 12 against pairwise map distance for all diagnostic SNP loci identified
at Bella Maria. Fig. 2.3a depicts results for chromosome 1, with linkage declining sharply in
the first few kilobases, then more gradually and approaching zero near 60 kb. Linkage decay
was apparent on other chromosomes examined (chromosomes 5, 21 and 26 (Fig. 2.3b)).
These chromosomes were selected based on their superior mapping quality, avoiding those
with extensive masking (Supplementary Fig. 2.6). Decay curves were robust to reduction of
the dataset to include only one clone per infection (Supplementary Fig. 2.7a) and also
emerged in analysis restricted to core sequence regions (genes syntenous to 7. b. brucei and
L. major) (Supplementary Fig. 2.7b). In contrast to clones from Bella Maria, analyses of
linkage decay for clones from El Huayco and Ardanza showed no relationship between r?
and map distance. Rather, complete and intermediate linkage, as well as an abundance of
random variant-associations, featured continuously through all distance classes on the same

chromosomes surveyed in Bella Maria — e.g., chromosome 1 (Figs. 2.3c-d).

We estimated the frequency of meiosis (N, / Ng) in our study groups by comparing two
different estimates of effective population size. The first estimate, Ny, is based on
recombinational diversity observed in the sample and represents the number of cells derived
from mating. The second, Ny, is based on mutational diversity and represents the total
number of cells, irrespective of sexual or mitotic origin (see Methods). As in linkage decay
analysis, we considered the best-mapping chromosomes 1, 5, 21 and 26. Values of p for
Bella Maria suggested ca. 3 meioses per 1,000 mitotic events in this group. In contrast, all
approximations of p for El Huayco and Ardanza fell within confidence limits of the

simulated, non-recombinant FSC _n control. These limits also contained p = 0 (Tbl. 2.2).

The intra-chromosomal recombination detected for Bella Maria was further explored by
aligning individual windowed alternate allele frequency means (AAFM) among clones
(Figs. 2.4a-b). As indicated previously (Supplementary Tbl. 2.2), sample genomes in Bella
Maria presented intermittent patches of high homozygosity (where AAFM approaches 1),

and these patches were often shared by variable subsets of clones (see windows with red fill

68



084

069

029

004

044

029

Bella Maria (chromosome 1)

Wi . 8 : 4
r!‘jﬁ‘ Y | AR LA b : _ :
R 1. A T R A N N S R LA X
ag &2 N BLE % v

S - i s

0 10 20 30 40 50 60 70 80 90 100

Distance between SNPs (kb)

Bella Maria (chromosomes 1, 5, 21, 26)

N
21
26
5
0 2 4 6 8 10 12 14 16 18 20
Distance between SNPs (kb)
El Huayco (chromosome 1)
0 10 20 30 40 50 60 70 80 90 100
Distance between SNPs (kb)
Ardanza (chromosome 1)
MA-‘-—».‘—.—_.- SRR ——
0 10 20 30 40 50 60 70 80 90 100

Distance between SNPs (kb)

Figure 2.3 Linkage decay and different rates of recombination in T. cruzi | groups. a Decay of linkage
disequilibrium on chromosome 1 for T. cruzi | clones from Bella Maria. Average pairwise linkage
values (r?) among SNP sites present in at least 90% individuals (n = 5,373) are plotted for map
distance classes between 0 and 100 kb. b Local regression curves for the decay of linkage
disequilibrium on chromosomes 1, 5, 21 and 26 for T. cruzi | clones from Bella Maria. ¢-d Lack of
linkage decay on chromosome 1 for T. cruzi | clones from El Huayco (4,093 SNPs) and Ardanza
(3,306 SNPs). Linkage values are plotted against genetic map distance as for Bella Maria above.
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Table 2.2 Composite-likelihood approximation of the population recombination parameter p. Positive
approximations of p for T. cruzi | isolates from Bella Maria differ from estimates derived for synthetic
non-recombinant controls. The FSC_n control represents ten 3.1 Mb chromosomes simulated
without recombination in fastsimcoal23'5. The confidence interval around p estimates for FSC n
overlaps zero. It also overlaps estimates for El Huayco, Ardanza and BS_n, a second synthetic non-
recombinant dataset generated by BamSurgeon?®® simulation approach (see Methods). Results from
chromosome simulation with the recombination rate r set to 3.2 - 10+ (FSC_r) demonstrate the
sensitivity of the LDhat3% interval program applied to 100,000 diploid individuals under a finite-sites
model of evolution.

Region Group (n) Median p (Morgans - kb-') 95% Confidence Interval

Chr. 1 Bella Maria (15) 0.424 0.370 — 0.562
Chr.5 Bella Maria (15) 0.549 0.400 — 0.647
Chr.21  Bella Maria (15) 0.534 0.514 - 0.560
Chr.26 Bella Maria (15) 0.357 0.338 — 0.392
Chr. 1 ElHuayco (12) 0.004 0.004 — 0.004
Chr.5 ElHuayco (12) 0.002 0.001 — 0.004
Chr.21  El Huayco (12) 0.002 0.001 — 0.003
Chr.26  El Huayco (12) 0.005 0.002 - 0.016
Chr. 1 Ardanza (11) 0.005 0.005 — 0.005
Chr. 5 Ardanza (11) 0.003 0.002 - 0.003
Chr. 21 Ardanza (11) 0.002 0.000 - 0.004
Chr. 26 Ardanza (11) 0.002 0.001 - 0.002
Chr. 1, simulated FSC_r (10) 78.886 77.023 — 80.739
Chr. 1, simulated FSC_n (10) 0.001 0.000 — 0.007
Chr. 1, simulated BS_n (10) 0.000 0.000 — 0.000

color in Figs. 2.4a-b). Given that SNP polymorphism was predominantly bi-allelic (< 1.5%
sites with > 2 alleles) in Bella Maria as well as in Cluster 2, these patches corresponded
directly to abrupt segmental increases in sequence similarity between clones (see SNP
alignment in Supplementary Fig. 2.8, expanded in Supplementary Figs. 2.9 (chr. 1) and 2.10
(genome-wide)). Mosaic patterns of recombination between Bella Maria clones were
confirmed by fluctuating intra-chromosomal genealogies established using sliding-window
neighbor-joining topology weighting in Twisst*”. Fig. 2.4c shows how strong support for
various different tree topologies emerges sporadically throughout chromosome 1. Such
mosaicism occurred genome-wide for most samples from Bella Maria (Supplementary Figs.
2.10 and 2.11b), but very infrequently in Cluster 2 (Fig. 2.4d, Supplementary Figs. 2.10 and
2.11).
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Figure 2.4 Genome-wide heterozygosity patterns and intra-chromosomal mosaics in T. cruzi |
clones. In a, each column represents the genome of one clone, considering the dataset’s total
130,996 SNPs. Rows within each column represent consecutive 5 kb sequence bins. Alternate allele
frequency means (AAFM) determine the color of each bin — blue (0) through green (0.5) to red (1).
Clones from Bella Maria tend to carry patchy homozygosity while those of Cluster 2 appear highly
heterozygous throughout the genome. Isolated tracts of high homozygosity (i.e., red patches) shared
between pairs of Bella Maria clones imply sudden sequence similarity and fluctuating phylogenetic
relationships inconsistent with divergence through drift. b provides a close-up on chromosome 1.
¢ and d demonstrate the impact of this intra-chromosomal mosaicism on the topology of phylogenetic
trees derived in a sliding window across chromosome 1. Multiple incongruent topologies are present
in Bella Maria (c), consistent with widespread genetic exchange. Only a single topology dominates
for samples of El Huayco (d), consistent with limited genetic exchange in Cluster 2. An example of
how AAFM heatmaps correspond to topology analyses is indicated in the heatmap close-up (b) and
tree topologies in ¢: a shared red patch between TBM_2824 CL1 and MBC_1545 CL3 corresponds
to neighbor-joining tree topology A in c. Later, near ca. 1,100 kb, a shared patch of high AAFM
between TBM_2824 CL1 and MCQ_1491_CL2 begins. This patch occurs where tree topology B
best describes phylogenetic relationships in Bella Maria. Topology B is identical to topology A except
for the replacement of MBC_1545_CL3 by MCQ_1491_CL2 as nearest neighbor to TBM_2824 CL1.
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2.4.4 Evidence of independent chromosomal ancestries in all groups

Apart from disrupting sequence patterns within chromosomes, sexual reproduction breaks
up associations between chromosomes within the genome. Given sufficient population
diversity, therefore, incongruent phylogenies are expected depending on the chromosome
used to construct them. As one might expect given estimated rates of meiotic sex in this
group, we encountered many such incongruences among Bella Maria clones belonging to
Cluster 1 (Fig. 2.5). Intriguingly, ancestries among several clones from Cluster 2 also

showed signs of incongruence at the chromosomal level (Fig. 2.5).
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Figure 2.5 Incongruent trees exemplify independent chromosomal ancestries among T. cruzi |
clones. Within individual sample genomes from Cluster 1 and Cluster 2, different chromosomes
present different phylogenetic ancestries. For example, when neighbor-joining trees are constructed
separately for chromosomes 1, 5 and 19, Gerinoma clones (prefix TGM) cluster with those from
Ardanza on chromosome 1. On chromosomes 5 and 19, they cluster with clones from Bella Maria.
El Huayco clones THY 3973 CL3 and THY 4333 CL3 also join the Ardanza clade on chromosome
19. Within cluster 1 (right panel), chromosome 1 presents a monophyletic clade composed of
MBC_1545 + TBM_2824 (labelled B) and MBM_1466 + TBM_3297 clones (C). TBM_2795 +
TBM_2823 + TBM_3329 clones (A) form an outgroup. These clades rearrange on chromosome 5,
where A changes places with C. The A+B clade occurs again on chromosome 19, while the B+C
group makes appearances on chromosomes 9 and 16, etc. Discrepant phylogenies such as those
highlighted here occur in various chromosomal comparisons throughout the genome. Nodes are
labelled in grey with support values from 100 bootstrap replicates. Green denotes the Cluster 1 clade.
Blue denotes Cluster 2. Yellow highlights unstable phylogenetic positions among different
chromosomes. Branch lengths are not proportional to genetic distance.
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We also recognized these varying affinities among El Huayco, Ardanza and Gerinoma
clones in discriminant analysis results for higher k-means solutions (e.g., see individual
membership probabilities for £ =5 in Supplementary Fig. 2.2b) and noted occasional shifts
to common homozygosity unrelated to coding vs. non-coding sequence annotation in painted
genomes (e.g., see chromosomes 6, 14 and 41 in Supplementary Fig. 2.10). Whilst subtle,
such segmental changes argued against divergence in strict isolation among Cluster 2 clones:
if not classic chromosomal reassortment, some form of introgression appears to have

occurred in this group.
2.4.5 Signatures of hybridization in highly heterozygous genomes

Of 80,052 SNP sites that differed from the Tcl-Sylvio reference genome in El Huayco,
62,036 also differed in Ardanza, and > 50% of this polymorphism occurred as fixed
heterozygous loci across the two groups. These observations, supported by population
genetic statistics (see Tbl. 2.1) and phylogenetic similarity (Figs. 2.1 and 2.2), provided
indications of potential shared ancestry across clones of Cluster 2, and possibly a hybrid

origin of this group.

To further explore potential hybrid origins of Cluster 2 clones, we first expanded our
previous within-group windowed haplotype analyses to include comparisons of 7. cruzi
clones between El Huayco and Ardanza groups (Supplementary Fig. 2.12a). These between-
group pairwise comparisons of phased SNPs exposed the frequent co-occurrence of
haplotype polymorphism in clones from Ardanza and El Huayco (but not clones from Bella
Maria). Reaching up to 180 kb, shared haplotype segments appeared similar in size to those
found in pairwise comparisons within Bella Maria (Supplementary Fig. 2.12b) and suggest
recent genetic connectivity throughout Cluster 2. This between-group connectivity is also

apparent upon careful examination of the co-ancestry matrix in Fig. 2.2.

Patches of low differentiation observed in pairwise comparisons within El Huayco
(Supplementary Fig. 2.12c) and within Ardanza (Supplementary Fig. 2.12d) often involved
both haplotypes. Unlike cases of haplotype-sharing described above, these were stretches of
similar or identical heterozygous diplotypes (i.e., phased regions in which haplotype A
occurs in samples 1 and 2, and also haplotype B occurs in samples 1 and 2) interrupting
otherwise dissimilar heterozygous sequence between two clones. Such diplotype sharing
within groups of Cluster 2 extended far beyond 180 kb, often to the end of the chromosome.
The same phenomenon was rarely observed in comparisons of clones within Bella Maria
(Supplementary Fig. 2.12f) and could point to the passage of Cluster 2 clones through an

ancestral polyploid state.
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To characterize ploidy variation in Cluster 2, somy analysis was undertaken (Fig. 2.6).
Chromosome-wide deviations in variant allele fraction and total read-depth suggested full-
chromosome trisomies in ten samples (Figs. 2.6a-b), with highest rates in THY 3975,
THY 4326 and THY 4332 clones (> 10 trisomies each). Of 21 chromosomes with apparent
trisomy, ten appeared trisomic in > 5 samples, with similar biases apparent in El Huayco and
Ardanza (e.g., chromosomes 19, 25 and 39). To explore the intra-clonal stability of somy
variation over time, we re-sequenced three aneuploid clones after sample cryo-preservation
and re-expansion in liquid culture (results are denoted with T2 suffix). While inferred
karyotypes of THY 4326 CL1 T2 and TAZ 4174 CL4 T2 matched initial results
(Supplementary Figs. 2.13a-b), several aneuploid chromosomes in THY 4332 CL3
appeared to have reverted to the disomic state by time T2 (Supplementary Fig. 2.13c). We
also examined ploidy in subclones of each re-passaged clone. No significant variation
occurred among the three subclones obtained from THY 4332 CL3 T2 nor between the
two obtained from THY 4326 CL1_T2, each with a karyotype matching that of the parental
clone (Supplementary Figs. 2.13b-c). Somy estimates for the single subclone obtained from
TAZ 4174 CL4 T2, however, were inconsistent to the progenitor karyotype
(Supplementary Fig. 2.13a).

In contrast to karyotypic variation in Cluster 2, we found minimal rates of aneuploidy in
Cluster 1 (Bella Maria). With the exception of TBM_2824 clones (trisomic for chromosomes
32 and 44), no Bella Maria clones showed increased somy despite similar levels of intra-
chromosomal read-depth variation as clones from Cluster 2. Interestingly, most Bella Maria
genomes showed severe reductions in sequencing coverage over chromosome 13. Such
reductions did not occur in El Huayco or Ardanza (Fig. 2.6a). Somy plots for all initial

samples are provided in Supplementary Fig. 2.14.
2.4.6 Mysterious migrants imply further forms of genetic exchange

Two samples in the dataset stand out as clear migrants with idiosyncratic genomic features
that indicate the possibility of further genetic exchange events. TRT 3949 (sampled near El
Huayco but associated to Cluster 1) and TCQ 3087 clones (sampled in Bella Maria but
associated to Cluster 2) were the only samples for which geographic and nuclear
phylogenetic neighbors did not match (Fig. 2.1, Supplementary Fig. 2.1, Supplementary Tbl.
2.1). These clones also provided the dataset’s only cases of discordant nuclear vs.
mitochondrial phylogenies: TRT 3949 clones carried a maxicircle genotype otherwise
found only in Cluster 2 and TCQ 3087 clones carried a maxicircle genotype highly
divergent to any other observed in the study area (Supplementary Fig.15a; see also

cytochrome b alignment in Supplementary Fig. 2.15b).
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Figure 2.6 Group-level aneuploidy among T. cruzi | clones. a We distinguished chromosomal and
intra-chromosomal copy number variation by evaluating kernel density distributions of window-based
somy estimates (see Methods). These distributions suggest multiple cases of whole-chromosome
somy elevation (highlighted in pink) for El Huayco clone THY 4332_CL2 (bottom violin plot). Several
clones from El Huayco and Ardanza present similar patterns (see Supplementary Fig. 2.14 for more
violin plots), as summarized in the heatmap. Read-depth densities suggest few cases of whole-
chromosome somy elevation for clones from Bella Maria (e.g., see violin plots for TBM_2823 CL4
and TBM_2824 CL2). However, mapping coverage drops dramatically (yellow) on chromosome 13
in most clones of this group. b Chromosome-wide shifts in sequence read-depth (blue) and alternate
allele frequency (AF, black) support whole-chromosome aneuploidies inferred from density
distributions above. In El Huayco clone THY_4332_CL2 (left column), for example, read-depth is
elevated over the entirety of trisomic chromosome 19 (sequence positions are plotted on the x-axis).
Alternate allele frequencies at heterozygous sites also distribute around values of 0.33 and 0.67 on
this chromosome (as compared to frequencies around 0.50 on disomic chromosome 18). Cases of
intra-chromosomal copy number variation for sample THY_4332_ CL2 are marked by local shifts in
read-depth and alternate allele frequency on chromosome 7. Comprehensive read-depth reduction
on chromosome 13 is exemplified for Bella Maria clone TBM_2823 CL4 (right column). Alternate
allele frequency values of 0 (indicative of the reference allele) predominate on this chromosome.
Patterns on chromosomes 7 and 18 also point to intra-chromosomal copy number variation and
stable disomy, respectively, for the TBM_2823 CL4 clone.
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These apparent migrants were also exceptional in nuclear sequence alignment: within a
single individual, some chromosome segments appeared to derive from Cluster 1, others
from Cluster 2. For example, on chromosome 1, TCQ 3087 shared a heterozygous patch
with Ardanza clones between approximately 785 and 920 kb. At ca. 1,117 kb, sequences
were similar to those of Gerinoma (TGM) clones and then, at ca. 1,122 kb, similar to El
Huayco clones. A long stretch of similarity to Cluster 1 ensued at ca. 1,285 kb
(Supplementary Fig. 2.9). TCQ 3087 and TRT 3949 clones were also the only samples for
which homozygosity was widespread throughout the nuclear genome (Fig. 2.4a). Making up
just 10% total polymorphic loci, bi-allelic SNPs were found restricted to scattered patches.
High levels of overall homozygosity observed in these clones could not be attributed to

certain chromosomes or to deviations in read-depth.
2.5 Discussion
2.5.1 Principle findings

Our comparative genomic analysis of 45 biological clones from an area of endemic
transmission supports the remarkable conclusion that a) 7. cruzi undergoes meiosis and b)
that grossly disparate reproductive strategies and rates of genetic exchange occur

simultaneously at a single disease focus.

In a subsection of the region (Bella Maria), signs of regular meiotic sex are markedly clear.
Genome-wide allele frequencies occur at Hardy-Weinberg equilibrium and ancestries
among individuals fluctuate from chromosome to chromosome. Parasite genotypes on
individual chromosomes appear equally mosaic: linkage between polymorphisms clearly
correlates with map distance, disequilibrium plummeting within just a few hundreds of bp.
We gauge that the meiosis driving these patterns of diversity occurs more than once every
1,000 reproductive events in Bella Maria. In nearby El Huayco, Ardanza and Gerinoma
groups, meiosis appears essentially absent. Instead, these groups exhibit high levels of
heterozygosity across the entire genome. We do detect discordant chromosomal phylogenies
among these parasites, but recombination estimates within chromosomes match those for
simulated, non-recombining controls and there are no signs of intra-chromosomal linkage
decay. Alongside excess heterozygosity, several El Huayco and Ardanza clones also present

extensive aneuploidy as well as long blocks of near-identical diplotypes.
2.5.2 General discussion

The strong signatures of meiotic sex we report from Bella Maria redefine our understanding

of T. cruzi biology and, alongside data from 7. b. brucei*®® and Leishmania®**, indicate that

this mode of genetic exchange is ancestral among medically important trypanosomatids>®’.
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We previously advised caution to those applying generalized theories of clonal evolution
(e.g., PCE'®?) to parasitic protozoa®. Our revelations around T. cruzi population genomic
structure in this study broadly support our case. Nonetheless, meiotic sex has never been
observed in the laboratory and multiple aspects of meiosis in 7. cruzi remain obscure!’!. The
site of genetic exchange (vector or host) in 7. cruzi is still not known, for example, nor is it
understood from which parasite life cycle stage gametes might develop. In contrast, 7. b.
brucei gametes have been characterized in the salivary glands of tsetse flies and a mechanism
for subsequent cytoplasmic fusion described**’. Clearly much basic research remains to be

done.

The distribution of genetic diversity we describe in Cluster 2 suggests that meiosis is largely
absent among these strains. Patterns of heterozygosity recently observed in 7. b. gambiense

were attributed to the Meselson Effect?9>:404

, whereby mutations accumulate in the absence
of recombination between homologous chromosomes during long-term clonality. The high
levels of heterozygosity we observe in Cluster 2 differs in important ways from the 7. b.
gambiense dataset and from predictions of the Meselson Effect’*>4%* For example,
discontinuities in genetic differentiation among individuals, instead of occurring as stretches
of absolute homozygosity on disomic chromosomes as they did in T. gambiense*®, occur in
our dataset as shared patches of heterozygosity among geographically distinct groups (e.g.,
El Huayco and Ardanza). Furthermore, we see no evidence of accumulation of private
heterozygous sites within individuals as one might expect during long term asexual
propagation — rather, over 50% of heterozygous sites are shared among samples in Cluster

2. If long-term asexuality is a poor explanation for heterozygosity in our dataset, an ancestral

outcrossing event could perhaps have played a role.

In Cluster 2, we observed incongruent phylogenies between different chromosomes, but no
evidence for linkage decay within individual chromosomes. In the only genetic exchange

event observed experimentally in 7. cruzi to date'’!

, parental genomes fused to tetraploid
hybrids and then began erosion back toward the disomic state. This fusion-then-loss process
resembles that in parasexual pathogenic fungi (Candida spp.) and allows for independent
chromosomal ancestries without intra-chromosomal linkage decay*®>. Moreover, gene
conversion in tetraploids can produce long tracts of increased identity on both homologs
(i.e., the diplotype-sharing we refer to in our results) without loss of heterozygosity upon
reduction to the disomic state*®. This is especially true when genome erosion is biased
against the retention of similar homologs!”, a condition that aligns with our results (e.g., we
observed elevations to average homozygosity in just two chromosomes (Supplementary Fig.

2.16), not in fifteen (33%) as would be expected in the case of random chromosome loss).

Aside from parasexual mating, however, polyploidization via failed meiotic division might
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also explain aneuploidy levels observed in El Huayco and Ardanza. Given that failed

7

chromosome segregation typically involves failed crossover’”’, this explanation also

reconciles a lack of linkage decay in Cluster 2. A third possibility, high levels of aneuploidy
via frequent asymmetric chromosome allotment in mitotically dividing nuclei®”, also finds
direct support in this dataset. Unlike occasional accounts of stable aneuploidy in the

174408409 " we detected short-term somy reductions in one of three re-

Trypanosoma genus
sequenced aneuploid clones and also found evidence for sub-clonal ploidy variation, often
termed mosaic aneuploidy in Leishmania research?’”®. Congruent aneuploidies observed in
closely-related Cluster 2 genotypes may thus reflect strain-specific or pre-adapted

amplification programs as in Leishmania spp.2°**7.

The ecological and evolutionary drivers of distinct but sympatric reproductive modes in 7.
cruzi are not clear. While 7. cruzi is able to infect a remarkable variety of insects and
vertebrates, its stercorarian transmission route is highly inefficient. 7. cruzi’s vectors and
hosts vary immensely in transmission competence and availability and occupy an array of
disparate niches (including the domestic-sylvatic interface)*'®#!2, The parasite’s life cycle
thus likely represents a continuum of bottlenecks linked to frequent local extinction and
recolonization events that increase levels of genetic drift and identity by descent (IBD). It
may thus come to less surprise that observations of diffuse hybrid clonality around a
restricted focus of sex in Bella Maria resemble spatio-temporal patterns of heterogony
demonstrated in various other metapopulation systems*!>#1® Facultative sex often coincides
with strong metapopulation structure, in which sexual variants are predicted to occupy core
habitat (where population subdivision and inbreeding depression are minimized) while
asexual variants disperse more freely without fitness costs from high IBD during frequent
founding events*!”. Extensive asexual dispersal eventually brings divergent lineages into
contact, creates potential to mate, form heterotic offspring, and reset clonal decay. Divergent
homologs, however, may impair canonical sex when F; hybrids mate?***!341% We noted
mass elevation of Tajima’s D in Cluster 2 of this study (Supplementary Fig. 2.17) and this
offers further support for both hybridization and bottlenecked clonal propagation in
generating an excess of intermediate-frequency variants over El Huayco and Ardanza*?*+?!,
Such excess, however, can also arise in simple (e.g., island model) demographic scenarios
when mating becomes very scarce, whereupon the influence of demographic changes on the
site-frequency spectrum becomes difficult to disentangle by current methods of inference**2.
Nevertheless, large patches of low differentiation observed in this study suggest a relatively
recent contribution of hybridization to allelic divergence in El Huayco and Ardanza.
Spatially correlated genetic substructure and low effective population sizes further attest the

role of metapopulation dynamics in structuring genetic diversity in these groups.
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Our genotype- and haplotype-based summaries of co-ancestry indicate that the meiotic
parasite group in Bella Maria is genetically segregated from others with distinct reproductive
histories in nearby El Huayco and Ardanza. Genetic discontinuity occurs consistently for
samples collected within a few kilometers distance and despite evidence for vector/host co-
infection and migration between divergent groups. Putative migrants, possibly the progeny
of these divergent groups, exhibit extensive (nuclear) homozygosity and, in the case of
TCQ 3087 clones, extreme maxicircle divergence and very high maxicircle read-depth.

5

Such observations are reminiscent of L. major crosses formed in non-native vectors***> and

of irregular, biparental mitochondrial inheritance in 7. b. brucei**>.

Unexpected and poorly repeatable hybrid genomes have arisen on a number of occasions in
experimental Tritryps research!”!2#442% Sensitivity to cryptic biochemical cues is clearly
high, but the molecular signals that incite recombination and control mating compatibilities

425 Our observations from the field do not

within these species remain essentially unknown
identify such mechanisms but provide many relevant questions to explore. For instance, do
ploidy barriers segregate transmission cycles in 7. cruzi? Is certain monosomy (e.g., recall
chromosome 13 in Bella Maria clones) associated with mating locus activation and sex? Is
high homozygosity a direct result of improper mating or a subsequent effect (gene
conversion, selfing, etc.)? What are the adaptive processes that underpin switching between

different reproductive modes?

Our work presents hard evidence for meiotic sex in 7. cruzi, as well as evidence for
widespread clonal expansion, after episodic hybridization events. Recent evidence for sex
obtained from Arequipa, Peru, in contrast, cannot be reliably distinguished from complex
patterns of gene conversion in a fully clonal population'’®. Complex mating structures are
of acute relevance to Chagas disease control. Recombination implies that important
epidemiological traits are transferable, not locked into stable subdivisions in space and time
(for case in point, consider, e.g., SRA gene transfer from T. b. rhodesiense to T. b. brucei'>®).
Recombination has driven major changes in 7. cruzi transmission in the past, including
adaptation to the domestic niche®-”’. Our data suggest that recombination may continue to
transform contemporary disease cycles, as suggested for Toxoplasma gondii**® and in
Leishmania spp.'>***>38! The proven presence of a sexual cycle in T. cruzi should now
reinvigorate the hunt for the site of genetic exchange within the host or vector, as well as its
cytological mechanism. An in vitro model for meiotic genetic exchange in 7. cruzi will
dramatically improve our ability to distinguish the genetic bases of virulence, drug resistance

and other epidemiologically relevant phenotypes. Determination of such traits may underpin

future efforts to treat and control Chagas disease.
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2.6 Supplementary figures and tables
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Supplementary Figure 2.1 Maximum-likelihood phylogenetic relationships among T. cruzi | clones.
Pairwise genetic distances are haplotype-based, defined as the proportion of non-shared alleles
across all SNP sites for which genotypes are called for all individuals (n = 7,392). The tree follows a
general time-reversible (GTR) substitution model with ascertainment bias correction.
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Supplementary Figure 2.2 Nonparametric population clustering of T. cruzi | clones. a Bayesian

Information Criterion (BIC) scores of k-means clustering solutions for population assignment of T.

cruzi | clones, based on 68,449 biallelic sites. Ward’s criterion*?” is used for objective selection of k.

2,k=5

6. Latter k-means solutions allow for additional partitioning of genetic diversity but do not

b Discriminant analysis of principle components (DAPC) membership probabilities for k

and k

necessarily imply true population subdivision. Colors represent different population assignments.
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Bella Maria n = 59,255

mean =-0.106
s.d.=0.376

El Huayco nz=iak,A09

mean = -0.885
s.d. =0.280

n =57,038

mean = -0.883
s.d. =0.263

|
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Supplementary Figure 2.3 Rates of homozygosity relative to Hardy-Weinberg expectations in T.
cruzi | groups. Genome-wide density distributions of Wright's inbreeding coefficient Fis are plotted

for T. cruzi | clones from Bella Maria, El Huayco and Ardanza. Fis sample size, mean and standard
deviation are also given for each group, based on the dataset’s total 130,996 SNPs.
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Supplementary Figure 2.4 Power to reject Hardy-Weinberg equilibrium in asexual genomes. We
measured the proportion of SNP sites for which the ‘~hwe’ function in VCFtools3°¢ incorrectly accepts
a null hypothesis of Hardy-Weinberg equilibrium (i.e., p > 0.05) in sets of 1 — 10 non-recombinant T.
cruzi genomes (22,475 SNPs simulated with BamSurgeon3®; see Methods). Type Il error
predominates when the simulated data is reduced to < 7 individuals, as occurs when observations
from Loja are restricted to one clone per vector/host (see Ardanza in Supplementary Tbl. 2.2).
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Supplementary Figure 2.5 Rates of haplotype differentiation relative to sequence length in T. cruzi
| groups. Boxplots show median and interquartile range for the number of distinct haplotypes found
in phased sequence alignment (n = 70,306 SNPs) at window sizes between 0 and 100 kb for Bella
Maria, El Huayco and Ardanza groups.
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Supplementary Figure 2.6 Tcl-Sylvio reference evaluation and masking. a Masks applied to the
Tcl-Sylvio reference genome based primarily on virtual mappability3®. Final masking (red)
disqualified a total of 24 Mb (including entire chromosomes 17, 40 and 47) of 42 Mb from
polymorphism analysis. Annotated genes are marked in black. b-¢c Proportions of mappable, unique
(determined by self-blasting) and gap content on Tcl-Sylvio reference chromosomes are indicated in
light grey, dark grey and blue, respectively. Red bars distinguish chromosomes excluded from
analysis based on these metrics.
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Supplementary Figure 2.7 Linkage decay in T. cruzi | clones from Bella Maria, after subsampling.
Linkage decay on chromosome 1 remains when analysis is restricted to a one random clone per
host/vector (n = 4,670 SNP sites) or to b core sequence regions, defined as areas of synteny among
Tcl-Sylvio, T. b. brucei and L. major reference genomes. The latter reduction in sample size to 1,178
sites limits analysis to short map distance classes (0 — 1.2 kb). Presentation is otherwise analogous
to that in Fig. 2.3a.
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AAFM for Cluster 1 (+ TCQ clones) chromosome 1
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Supplementary Figure 2.8 Patchy homozygosity and SNP-sharing suggests recombination among
T. cruzi | clones. In the top plot, each column represents the first chromosome of one clone. Rows
within each column represent consecutive 5 kb sequence bins. Alternate allele frequency means
(AAFM) determine the color of each bin — blue (0) through green (0.5) to red (1). Long tracts of high
AAFM (i.e., large red patches) expose abrupt segmental increases in sequence similarity between
different pairs of clones, as exemplified in the SNP concatenations below. Homozygous SNPs are
colored according to base identity — black (T), blue (G), green (A) and red (C). Heterozygous SNPs
are colored yellow. Single-asterisked AAFM patches reflect high sequence similarity between
TBM_2824 CL1 and MBC_1545 CL3 near the start of the chromosome 1. Double-asterisked
patches at ca. 1,200 kb reflect a sudden shift in pairwise similarity. Here, SNP identities in
TBM_2824_CL1 and MCQ_1491_CL2 begin to align.
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Supplementary Figure 2.9 SNP alignment across chromosome 1 for all T. cruzi | clones. Homozygous SNPs are colored according to base identity
— black (T), blue (G), green (A) and red (C). Heterozygous SNPs are colored yellow. Colors overlap where SNP density is high. Only sites without
any missing genotypes are shown. White spaces in grey bars below alignment represent coding regions on forward (top) and reverse (bottom)
strands. The third bar indicates masked sequence regions in red, unmasked regions in green.



e et
0 R 4 RO B N0 800 L BRSBTS NN R D L S AR T R o I e T e e e ety
Be"a Mana o Wmmlll - B 2S SRS wE A -_‘m-mwm~
FERTETEEIREIS IR
*Santa tha % e T e e et s et st =i
] 0 = TR D £ R D IR L) B |10 U B § L4 4D MR TR OB 88 8 S i L S ——————— el SDSENDSER SN V8 +Hh SRR S DS SIS Wi SR
"Bella Maria 2z e s R I e e e B S B I D B D DS DI R i
Gerinoma — B T B S L L S e e S I R S S I SR B R S s e
e e e E R S T e e TTim BRSO D ERSRAh oINS L DIERTARS austw SRR 2 n0 AR iR E B et a
EI Huayco T e b R e e D A 4 Dl b L e SR D B e e L L L L L I R R e T 1)
D R L =.=M.l P R B e R R e e AR R . -&-m R R i LR T
SlinmEimsnstaen ) e 2) Jotinameniniiatima S i ah i S A S e B IR S RSt tR AN h NIERTART il m S SR T Al ity s i St s
o T T T T T e o]
L e L I T D T T T Y R T T - T L L e R T
T e i I R I E L T T T L e e L T N T~ o N S R U
LR A - L il B L L L R T I I e L i I Ll
e T e T e T P s e e e e e et
Ardanza —jiE s st s e S L S N T T S s LR T B e o T T T e T
e T R Nty eBank s G B L T T TSP S e g e e
L e Ty L I B T L T e T T R B T e T e e e

06

chr. 1 2 3 4 5 6 7 8 9 10 11 12 14

0 0 GO VRIS LA R R R W ARSI B A B S A e ) e

*

B e A BRI IAR IR S AT WA b SRR

———
SR B R M BAER IS BN A & ﬂ
"'—"—'-":"'_—"_" : : SR B S A
o Bl . o 4l B0 A1 BBl 4 D IO B 1 e 25 ) TR ) MBS S8 B B L ) G ]
- (AN R R

IR - - o

onmnTInoITITmanoos Irommoomm oo s S I T e S S
e
o L S T L S T L S T IS I e
e  Eomimmmi e = s EEae S s = S
e e
AR AR SR B o B R AT RS R e R R e R R e s e R B e R R U e MR R B e 8 B R S DO o e I R R R e R Bk R AR R B R
ARAE IR R B b R D SR R R R R R U b R B I ek Bk w8 b L e i e L ettt e e e B AR B
R L I R S R NS SRS s
St e oo SETOEE =of I T I I T mmgﬁu{%i Seees
mmn--:wm:ﬁ =. :: = 2%:‘ == =~ g B el e S el L 3 Ib: z.‘l - mma‘-m‘:z =l m":
o e e Comomm St S T e S e T
L L T L Lo L L S L e o i o
AT 8 B e R R T o SRR R A e R e BB R R I e R B e e

15 16 18 19 20 25 26 2728 29 31 32 33 35 36 37 38 39 41 4243 44 45 46

Supplementary Figure 2.10 Genome-wide SNP alignment for all T. cruzi | clones. Homozygous SNPs are colored according to base identity — black (T), blue (G), green (A)
and red (C). Heterozygous SNPs are colored yellow. Only variable sites without any missing genotypes are shown. Grey bars below alignment represent SNPs in coding
regions. Asterisks denote outlier samples from Santa Rita (TRT_3949 clones) and Bella Maria (TCQ_3087 clones). Occasional patches of shared homozygosity (e.g., see
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Supplementary Fig. 2.9.
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Supplementary Figure 2.11 Intra-chromosomal phylogenetic relationships among T. cruzi | clones.
a Theoretically, fifteen neighbor-joining (NJ) topologies can be drawn to describe relationships
among five samples within a larger phylogenetic tree. When NJ trees are constructed in 50 kb sliding-
window analysis (step size = 10 kb), a single topology dominates across chromosome 1 for a five-
sample subset from Ardanza. Similar is true for EI Huayco (see Fig. 2.4d). Topology weightings (the
relative abundances of the different five-sample topologies after iterative sampling of sub-trees+)
are plotted (with loess smoothing; span = 0.125) for each window across the chromosome. b Mosaic
(Bella Maria) vs. stable (Cluster 2) genealogies occur as such genome-wide. Colors represent
different tree topologies. Poorly mapping chromosomes 17, 40 and 47 are excluded from analysis.
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Supplementary Figure 2.12 Pairwise haplotype and diplotype sharing within and between T. cruzi | groups. In plots a-d, light green bars indicate genetic distances for
pairs of samples in consecutive 60 kb sequence windows along phased haplotype A on chromosome 1 (996 SNP sites). Opposite bars (dark green) quantify distances
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b shows similar results from a pairwise comparison representative of haplotype differentiation within the Bella Maria group. Pairwise haplotype differentiation within El
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Supplementary Figure 2.13 Temporal and sub-clonal somy variation for selected T. cruzi | clones. a Following first sequencing and sample cryopreservation,
TAZ_ 4174 _CL4 was thawed, re-expanded in Liver Infusion Tryptose (LIT) medium (no additional passages) and sequenced for a second time. One subclone
obtained from the re-cultured sample was also sequenced. Boxplots show median and interquartile range of site-wise somy estimates (2 - m / p30 of Mm) for each
chromosome (see Methods). While the ‘parent’ clone karyotype appeared unchanged at time of second sequencing (T2), results for subclone T2_D1 suggest sub-
clonal chromosomal copy number variation (e.g., see white vs. yellow boxplots for chromosomes 4 and 39). b THY_4326_CL1 was also re-sequenced but showed
no evidence of somy differences between subclones (n = 2) or over time. The sample was passaged three times post-cryopreservation. ¢ THY_4332_CL3
appeared to have reduced somy levels between first and second sequencing (four passages), but no sub-clonal variation was observed (n = 3).
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T. cruzi DTU V (SC43; AJ439721)

T. cruzi DTU Il (CM17; JQ581369)

T. cruzi DTU IV (92122102R; JQ581365)
T. cruzi DTU | (93070103Pcl1; JQ581333)

Supplementary Figure 2.15 Mitochondrial phylogenies for T. cruzi | clones. a Maxicircle sequence
variation among all samples except TAZ _4172_CL3 (missing information at 44% SNP sites)
represented as a TCS network*28. Black tick marks between nodes indicate the number of mutations
between genotypes. Node sizes correspond to the number of samples represented by the particular
maxicircle variant. Green nodes contain members of Cluster 1, as defined in nuclear phylogenetic
analysis (Fig. 2.1). Blue nodes contain members of Cluster 2, but also TRT_3949 clones. TCQ_3087
clones appear divergent, with 668 diagnostic SNP differences relative to other clones of Cluster 2. b
TCS network from cytochrome b alignment (617 bp), for which sequences from all 7 T. cruzi sub-
lineages (including TcBat) and other congeners are available for comparison. These sequences are
detailed in Marcili et al. (2009)%* and Messenger et al. (2012)'#2. Tick marks indicate number of
mutations between genotypes. Samples from this study (one representative per maxicircle variant)
are shown in red.
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Supplementary Figure 2.16 Heterozygosity per chromosome in T. cruzi | clones from El Huayco
and Ardanza. Average heterozygosity values fall between 40 and 50% for most chromosomes. Only
chromosomes 14 (in Ardanza clones) and 41 (in both Ardanza and El Huayco clones) show
substantial increases in homozygosity.
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Supplementary Figure 2.17 SNP variation relative to neutral expectations in T. cruzi | groups.
Histograms plot variation in Tajima’s D values over 50 kb sequence bins in genomes from Bella
Maria (96,691 SNPs), El Huayco (80,052 SNPs) and Ardanza (78,325 SNPs). Empty bins (i.e.,
windows lacking polymorphism within the group) do not enter analysis.
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Supplementary Table 2.3 Recalculation of population genetic descriptive metrics using only one
random T. cruzi | clone per vector/host. We reduced the dataset to identify biases related to multiple-
vs. single-clone sampling per infection. While overall inference is similar, single-clone sampling can
raise estimates of nucleotide diversity and rates of type Il error in Hardy-Weinberg equilibrium null
hypothesis testing (see power analysis in Supplementary Fig. 2.4). Abbreviations: PS (polymorphic
sites); T (median nucleotide diversity, per site); 6 (median Watterson estimator, per site); MAF
(within-group minor allele frequency); PRS (private sites); SS (singleton sites); HWE (Hardy-
Weinberg equilibrium); HS (heterozygous sites).

Group (n)  PS i 6 MA|I’=S>a(:.05 (vs. BIV|ID F ESH /AR) SS f.?vié' HS F:-)l(sed
BellaMaria (8) 95313  0.13  0.001 59% 0/41270/41063 22344 90461 55571 2848
El Huayco (8) 76889 0.53  0.001 71% 22846/0/17681 6855 44911 56016 45792
Ardanza (6) 75709 0.55  0.001 71% 21459/16501/0 9844 72968 55638  A7761

Supplementary Table 2.4 Re-sequencing of clones and subclones for additional ploidy analyses.
Having entered cryopreservation (-150 °C) immediately after the first epimastigote DNA extraction
(Dec. 2016), three clones were re-expanded into liquid culture and further subcloned by limiting
dilution starting Dec. 2018. These clones and subclones underwent < 4 passages in liver infusion
tryptose (LIT) medium prior to epimastigote DNA extraction in Mar. 2019. Huge thanks to Jaime
Costales and Jalil Maiguashca for preparing these samples. Abbreviations: RL (read-length); NRD
(average nuclear read-depth).

ID Type Number of passages in LIT RL (bp) NRD

TAZ_4174_CL4_T2 Clone 0 2x75 135

THY_4326_CL1_T2 Clone 3 2x75 131

THY_4332_CL3_T2 Clone 4 2x75 180
TAZ_4174 CL4_T2 D1 Subclone 0 2 x 150 31
THY_4326_CL1_T2_D1 Subclone 0 2 x 150 49
THY_4326_CL1_T2 D2 Subclone 0 2 x 150 26
THY_4332_CL3_T2 D1 Subclone 0 2 x 150 44
THY_4332_CL3_T2 D2 Subclone 0 2 x 150 59
THY_4332_CL3_T2 D3 Subclone 0 2 x 150 41
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3.1 Abstract

Leishmania infantum causes American visceral leishmaniasis, a deadly vector-borne disease
introduced to the New World during European colonization less than five hundred years ago.
Within this short time period, the parasite has established widespread endemic transmission
cycles using non-native vectors and human infection has become a major concern to public
health, especially in Brazil. A multi-kilobase deletion occurs frequently in Brazilian L.
infantum genomes and this deletion has been associated with resistance to miltefosine, an
important anti-leishmanial drug. We apply multiple phenotypic and phylodynamic analyses
to 126 L. infantum genomes to determine how demographic and selective consequences of
recent invasive history have contributed to the emergence of this genotype and other
epidemiological variability across Brazil. We revise geographical associations and describe
deletion size differences with phylogenetic signals consistent with the occurrence of
convergent deletion events in multiple clades. The deleted locus encodes ecto-3’-
nucleotidase, and we show that loss of function in this important metabolic enzyme is
coupled to ecto-ATPase upregulation, possibly creating a fitness advantage because both
enzymes enable purine salvage, but they differ in antigenic traits. We also demonstrate
altered phenotypes in heterozygous, ‘half-deletion’ genomes and prove that these represent
recent genome-wide hybridizations between deletion-carrying and non-deletion isolates.
The intricate and alarmingly labile population genetic structures we expose herein must be

precisely monitored to guide future disease control.
3.2 Introduction

Species invasion creates a unique opportunity for extreme evolutionary transformation.
Small founding populations face unfamiliar selection pressures and sampling effects that
drive genetic drift. Rapid changes in genetic makeup may occur and can dictate long-term

population genetic structure throughout the invasive range*”.

Subsequent secondary
introductions into the same area can also reshape diversity patterns in the population, for
example, by promoting introgressive hybridization events between ancestrally allopatric
groups*’. One medically relevant but little explored example of species invasion is
represented by the introduction of Leishmania infantum, parasitic agent of visceral
leishmaniasis (VL), into the New World during European colonization of the Americas ca.

18,19

five hundred years ago ®'”. Population structure and genetic change in Leishmania

populations are of major concern to public health, as intra-specific genetic variation within

200,434 and

this genus is associated with major differences in pathology**! ™3, drug resistance
other eco-epidemiological traits*>**¢, Driven by karyotypic plasticity?®**’, Leishmania

parasites are capable of rapid adaptation and epidemic expansion after environmental change
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and/or bottleneck events***. Genetic recombination among L. infantum populations is
another potential source of phenotypic diversity. Hybridization between divergent
Leishmania isolates and species that cause distinct forms of disease’®* can impact

155,244,294,438,439

pathogenicity as well as facilitate vector'>* and geographic range expansion®”’.

In the Americas, VL is a zoonosis transmitted by Lutzomyia sandflies which have evolved
in isolation of Phlebotomus, the Old World vector genus, for ca. two hundred million
years**®. Domestic dogs represent the principal reservoir hosts. The New World distribution
of L. infantum now extends from the southern United States to northern Argentina**! and
Uruguay**?, but prevalence and/or reporting varies considerably across this range. Over one
thousand VL cases have been recorded yearly in Brazil since the 1980’s, first limited to the
Northeast*** but now increasingly dispersed, including in urban areas such as those in Mato
Grosso, Minas Gerais and Sao Paulo state. VL infections are significantly less common
elsewhere on the continent compared to Brazil***. Atypical cases, e.g., involving
dermotropic or, more rarely, drug resistant L. infantum isolates, are also sporadically
observed in the New World**#4¢:23 but direct links between changes in disease progression
and specific host or parasite factors are rarely established. A recently published genome-
wide association study (GWAS)?8, however, reports that L. infantum populations from
Piaui, Maranhdo and Minas Gerais (Brazil) show resistance to miltefosine, an important anti-
leishmanial drug, and associates this resistance to a large (> 12 kb) deletion said to increase
in prevalence from north- to southeastern Brazil (e.g., 5% in Rio Grande do Norte and 95%
in Minas Gerais). The deletion is homozygous, spanning across all four copies of tetrasomic
chromosome 31 (chr31). It covers four open reading frames: LinJ.31.2370 (ecto-3'-
nucleotidase/nuclease), LinJ.31.2380 (ecto-3’-nucleotidase precursor), LinJ.31.2390
(helicase-like protein) and LinJ.31.2400 (3,2-trans-enoyl-CoA isomerase). Ecto-3’-
nucleotidases take part in purine salvage, macrophage infection and escape from neutrophil
extracellular traps**’*%. Helicases are essential to DNA replication and 3,2-trans-enoyl-
CoA isomerase contributes to fatty acid oxidation, a critical component of gluconeogenesis
in amastigote parasite forms*°. The simultaneous deletion of these four genes likely occurs
through non-conservative homologous recombination between repetitive elements shown to
border the deletion site**®?°. Carnielli et al. also very recently substantiated the statistical
association between chr31 deletion and miltefosine treatment outcome?>® by demonstrating
that locus knockout induces miltefosine resistance in vitro (findings presented at the British
Society for Parasitology’s March 2020 Trypanosomiasis and Leishmaniasis Seminar®>).
The mechanisms by which the chr31 deletion has come to occur in multiple different areas
of Brazil, however, remain completely unknown. Its abundance and geographic patterns are

also only rudimentarily described?®. Selection pressure by miltefosine is unlikely to be
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involved because the drug was not used in Brazil until 2005%! and its very high costs have
kept treatment with antimonials and/or amphotericin B far more common since then*>433,
Analyses of demographic history, epidemiological phenotypes and genetic covariation in
deletion-carrying isolates are urgently required to clarify the emergence of the deletion

genotype and quantify its spread and implications for disease control.

The present study first extends survey for the chr31 deletion into nine additional states of
Brazil, including also isolated localities in Bolivia, Honduras and Panama. Deletion-carrying
isolates appear to dominate in most states (also in Rio Grande do Norte, in contrast to
descriptions by Carnielli et. al (2018)*®), yet with notable discontinuities within Piaui and
between Mato Grosso and Mato Grosso do Sul. Our whole-genome and amplicon-based
analysis of 201 L. infantum isolates then goes on to search for the deletion’s origin and
mechanisms of its proliferation in the context of invasive parasite expansion into the New
World. We describe deletion size differences and phylogenetic relationships that are not
symptomatic of an early ancestral mutation having risen to high prevalence simply by
founder effect. Instead, multiple independent deletion events may have occurred and
expanded into various clades. We demonstrate loss of ecto-3’-nucleotidase function coupled
to increased ecto-ATPase activity in deletion-carrying isolates, suggesting the possibility
that alternative metabolic strategies enhance L. infantum fitness in the introduced range. We
also demonstrate altered phenotypes in highly heterozygous, ‘half-deletion’ parasite
genomes. These are clearly the product of hybridization events between deletion-carrying
and non-deletion isolates, also involving a highly divergent population from Mato Grosso
do Sul. The distribution of L. infantum genetic and phenotypic diversity we summarize

herein must be precisely monitored to guide future visceral leishmaniasis control.
3.3 Methods
3.3.1 Parasite samples and whole-genome sequencing

All 201 L. infantum samples assessed in this study are listed in Supplementary Tbl. 3.1,
which also provides information on alternative nomenclatures, geographic origin, chr31
read-depth profile (i.e., whether or not isolate carry the chr31 deletion described by Carnielli
et al. (2018)*®) and analysis type (i.e., whole-genome sequencing (WGS) analysis or PCR
product electrophoresis). All parasites sequenced in this study were obtained from the
Colecao de Leishmania do Instituto Oswaldo Cruz (CLIOC) and were cultured in biphasic
(Novy-MacNeal-Nicolle (NNN) + Schneider’s) medium prior to genomic DNA extraction
(DNeasy Blood & Tissue Kit (Qiagen). Mariana Boité performed all parasite handling and
DNA extraction procedures above. Fragmented DNA (mean insert size = 377 nt) was

sequenced using Illumina NextSeq 500 and HiSeq 2500 instruments and mapped to the
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MCAN/ES/98/LLM-724 (termed JPCMS5 elsewhere in the text) reference assembly
available at https://tritrypdb.org/common/downloads/release-33/LinfantumJPCM5/fasta/
using default settings for BWA-mem v0.7.3°%. Publicly archived and/or previously
published L. infantum reads were mapped using the same conditions as the newly generated
WGS data (see mapping coverage per sample in Supplementary Tbl. 3.1). For enzymatic
assays (further described in Section 3.3.5), parasites were cultivated in flasks containing
Schneider’s medium with 20% fetal calf serum (FCS) and 2% filtered urine until late log-
phase expansion. Growth curves were obtained to rule out samples with possible
confounding differences in replication rate. All parasites used in the experiments showed
similar replication rates. These parasites had been kept in culture between 10 and 20 passages

after isolation and cryopreservation by CLIOC.
3.3.2 Phylogenetic, demographic modelling and selection analyses

We visualized genome-wide phylogenetic relationships among samples by maximum-

likelihood tree construction in IQ-Tree v1.5.4%*

, optimizing a general time-reversible
substitution model based on single-nucleotide differences at polymorphic sites. L. donovani
isolate MHOM/NP/03/BPK282/0 was temporarily included as an outgroup in order to
identify an L. infantum sample to subsequently root the tree. Euclidean dissimilarities among

genotypes were visualized by metric multidimensional scaling (PCoA)**

using the base
‘stats’ package v3.4.1 in R v3.4.1°%* Ancestry estimation was performed using
ADMIXTURE v1.3*¢ and putative first-generation (F1) hybrid genotypes simulated from
observed data by calculating allele frequencies of two parental populations, then drawing
gametes following a multinomial distribution in the R package ‘adegenet’*’. Second-
generation (F2) hybrids were simulated by iterating the same process but with parental
populations comprising the prior Fi genotypes, and neighbor-joining (NJ) relationships
among the simulated and observed data were plotted with the ‘ape’ package v5.0°%* in R
v3.4.13%. For haplotype-based NJ trees, heterozygous single-nucleotide polymorphisms
(SNPs) were first phased over 30 iterations using BEAGLE v4.13%2. No genotype imputation
was performed. We tested for admixture events in populations showing poor fit (high
residuals) in tree-based phylogenies by searching non-treelike (graph) structures for higher
maximum-likelihood in TreeMix v1.13*°%, The program also implements Fs-statistics to test

significance of the improved fit.

Demographic histories inferred from phylogenetic analyses above were further tested by
simulating ten different scenarios of pairwise divergence (ancient migration; ancient
migration with bottleneck, isolation with (constant) migration; isolation with (constant)

migration and bottleneck; isolation with change in migration; secondary contact; secondary
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contact without hard admixture; secondary contact without hard admixture with bottleneck;
strict isolation; and strict isolation with bottleneck) and associated genome-wide SNP
polymorphism in fastsimcoal2 v2.5.23'5. For each of > 100,000 random parameter sets
simulated per divergence model, twelve summary statistics (total number of polymorphic
sites; mean total heterozygosity; number of segregating sites per population; number of
private sites per population; number of pairwise differences per population; mean and
standard deviation of segregating sites over populations; and mean and standard deviation
of pairwise differences over populations) were computed in ARLSUMSTAT v3.5.2%.
Model selection and parameter estimations followed by Approximate Bayesian Computation

via Random Forests (ABCRF) using 1,000-tree regression forests in the ‘aberf” package
v1.731%in R v3.4.1%,

Selection analyses between predefined groups (deletion-carrying and non-deletion type
isolates) were performed by assessing site-wise Fst neutrality with BayeScan v2.1*°, We
set prior odds for the neutral model to 100 and retained loci with logio g-values less than -2,
where false discovery rate is expected to fall below 1%. Results were then filtered for coding
regions and SNP and insertion-deletion (INDEL) effects predicted with SNPEff v3t*°! using
the JPCMS5 annotation file available at https://tritrypdb.org/common/downloads/release-
33/LinfantumJPCM5/gft/data/.

All above analyses were applied to SNPs and INDELs identified by local re-assembly,
population-based genotype and likelihood assignment with Genome Analysis Toolkit
(GATK) v3.7.0°%. After testing various filtering criteria on the re-sequenced (paired-end 2
x 150 nt Illumina NextSeq) JPCMS isolate, we chose to exclude variants occurring in tight
clusters (i.e., more than three variants within ten bases) as well as those achieving less than
1,500 phred-scaled call quality (i.e., the variant-call-format QUAL field) as calculated by
GATK. We also excluded variants assigned in non-unique mapping positions of the
reference genome. Specifically, we generated synthetic, non-overlapping 125 nt sequence
reads from the JPCMS5 reference assembly (excluding unassigned contigs) and mapped these
reads back to this same assembly using the ‘mappability’ program in the Genomic Multi-
tool software suite v1.376°°%%! Only variants from areas with perfect, i.e., singleton,

synthetic mapping coverage were kept for SNP and INDEL analysis.
3.3.3 Chromosomal and gene copy number analyses

To estimate chromosomal somy, we calculated mean-read-depth (m) for successive 1 kb
windows using SAMtools v0.1.18%%7 ‘depth’ (default options) and then calculated a ‘median-
of-means’ (Mm) for each chromosome. We let the 40th percentile (p40) of M values

represent expectations for the disomic state, estimating copy number for each chromosome
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by dividing its Mm by the sample’s p40 value and multiplying by two. Copy numbers were
then visualized with the 'heatmap.2' function in the ‘gplots’ package v3.0.1.2%2 in R
v3.4.13%*. Samples were organized in the heatmap based on UPGMA clustering of Bray-

Curtis dissimilarities measured using the ‘vegdist’ function in the ‘vegan’ package v2.4.4>.

Gene copy number analyses were guided by Hideo Imamura using scripts from Imamura et
al. (2016)*%. Briefly, we calculated median read-depth for each coding region (c) in the
JPCMS5 annotation file and then divided each c value by the median of ¢ values across the
chromosome to obtain a normalized copy number estimate (s) for each coding region of each
sample. We then averaged s values from corresponding coding regions across samples within
each of two predefined groups (deletion-carrying and non-deletion type isolates). Coding
regions for which group means differed by more than 0.3 were selected for Mann-Whitney
U (MWU) significance tests using SciPy v1.3.14¢4. Following Bonferroni correction (i.e.,
dividing the standard p-value cut-off of 0.05 by the number of coding regions submitted to
MWU), we generated a heatmap of s values at coding regions which showed significant
differences between the two groups, organizing samples by UPGMA clustering of Bray-
Curtis similarities as in chromosomal somy visualization above. Coding regions with
significant MWU results were also reassessed by analysis of covariance (ANCOVA) using
the ‘car’ package v3.0.2%% in R v3.4.1°%* to determine whether p-values remained significant
after controlling for sample geographic origin. Isolates from Teixeira et al. (2017)**7 (see
Supplementary Tbl. 3.1) were excluded from gene copy number analyses as these had not

been made available as complete read-pairs in public sequence archives.
3.3.4 Monoclonal subcultures and qPCR

Single cell sorting was performed on a MoFLO ASTRIOS Cell Sorter (Beckman Coulter)
by Mariana Boité at the Oswaldo Cruz Institute in Rio de Janeiro, Brazil. L. infantum isolates
IOCL 2949 and IOCL 3134 entered cell sorting at 1 - 10° cells/ul and individual cells were
collected in a 96-well plate, each well containing 200 pl Schneider’s medium supplemented
with 2% FCS. Wells were inspected five days later using an inverted microscope and liquid
from those containing single parasites transferred to separate tubes of NNN. Parasites were
pelleted three days later at 1,200 g for 15 min and DNA extracted with DNeasy Blood and
Tissue Kit (Qiagen). Primer sequences 5’-ACGATCGGCCTCAAAACACT-3’ (forward)
and 5’- GGTGAAGTCTTCGTCCGTGT-3’ (reverse) were designed to target LinJ.31.2380
(within the chr31 deletion site), and primer sequences 5’-CGAACCTTGGAGCTTCCCTT-
3’ (forward) and 5’-TCAAGGTTGTGTCCGTCGAG-3’ (reverse) were designed to target
LinJ.31.2330 (downstream of the chr31 deletion site). IOCL 2666 was used as a reference
sample to calibrate the AACt method described by Livak & Schmittgen (2001)*®°. Briefly,
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qPCR cycle thresholds (Ct values) for both chr31 sequence targets were determined for the
samples of interest (IOCL 2949 and 3134 and their monoclonal subcultures) and for IOCL
2666. Ct values for the LinJ.2330 target were assumed to be equivalent between the sample
of interest and the reference in the case of equal quantities of input DNA. Deviations from
the 1:1 ratio for the LinJ.31.2330 target were used to normalize Ct ratios for the LinJ.31.2380
target between the sample of interest and the reference. The normalized ratios were
considered to represent a fold change estimate of gene dose within the deletion site relative
to that within downstream sequence. The qPCR reaction used 0.2 nM primer input and 1x
SYBR Green Master Mix with 40 amplification cycles and an annealing temperature of 62
°C. Three experiments were performed per sample, each in technical triplicate. The same
fold change estimation protocol was performed in follow-up analysis of monoclonal
subcultures 2949 B2 and 2949 G1 using the parental culture IOCL 2949 as the reference.

All above qPCR experiments were completed by Mariana Boité and Otacilio Moreira.
3.3.5 Ecto-3’-nucleotidase and ecto-ATPase activity measurement

Ecto-3'-nucleotidase activity was quantified by measuring inorganic phosphate (P;) release
during adenosine 3’-monophosphate (3’-AMP) hydrolysis as in Freitas-Mesquita et al.
(2016)*7. Briefly, L. infantum promastigotes (1.0 - 107 cells/ml) were incubated at 25 °C for
1 h in 0.5 ml reaction mixture containing 16.0 mM NaCl, 5.4 mM KClI, 5.5 mM D-glucose,
50.0 mM HEPES (pH 7.4) and 3.0 mM 3’-AMP. Reactions were terminated by adding 1.0
ml ice-cold 25% charcoal in 0.1 M HCI and centrifuged at 1,500 g for 15 min to remove
nonhydrolyzed 3’-AMP. Equal volumes of supernatant and Fiske & Subbarow reagent (0.1
ml each) were mixed to effect the (phosphate-dependent) reduction of ammonium molybdate
to phosphomolybdate and absorbance at 660 nm in samples and P; standards measured after
30 min to derive sample Pi. Ecto-ATPase activity was measured with the same protocol
except replacing 3’-AMP with 1.0 mM adenosine 5’-triphosphate (ATP) and 1.0 mM MgCl..
Experiments were performed in technical triplicates using IOCL 2664, 2666, 2972, 3598 and
3634 and monoclonal subcultures 2949 B2 and 3134 B1. All above procedures were
completed by Anita Freitas-Mesquita and José Roberto Meyer-Fernandes.
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3.4 Results
3.4.1 High prevalence of multi-kilobase deletion on chr31

Comparative analysis of 126 New World and Old World L. infantum genomes against the
JPCMS reference assembly confirmed the occurrence of a > 12 kb homozygous deletion on
tetraploid chr31 (see somy values in Supplementary Fig. 3.1), previously described as a
miltefosine sensitivity locus?*®. The deletion occurred in 73 sequenced New World genomes
and in 55 of 75 additional New World samples screened via qPCR. Sequenced deletion-
carrying isolates (hereafter referred to as ‘Del’) originated from Brazil (71 of n = 91) and
Honduras (2 of n = 2) but none were found in the Old World (0 of n = 19). Thirty-eight non-
deletion (‘NonDel’) isolates were found in restricted regions of Brazil (concentrated
primarily in Piaui and Mato Grosso do Sul), but also in Panama (2 of n = 2) (Supplementary
Tbl. 3.1, Fig. 3.1) and in the Old World (19 of n = 19). The deleted region spans base pair
positions 1,122,848 to 1,135,161 in most Del samples (but see variability in deletion
start/stop sites in Supplementary Tbl. 3.2) and comprises genes encoding for ecto-3’-
nucleotidase (LinJ.31.2370), ecto-3’-nucleotidase precursor (LinJ 31.2380), helicase-like
protein (LinJ 31.2390), and 3-2-trans-enoyl-CoA isomerase (LinJ.31.2400). Apart from the
relatively large deletion, an additional 391 fixed INDELs (small insertions or deletions up
to 30 nt) were found in Del isolates. Of these, however, 260 were also fixed in New World
NonDel isolates and 98% occurred in non-coding sequence regions. The two INDELs found
in coding regions and fixed only in Del isolates (Supplementary Tbl. 3.3) affect hypothetical
proteins LinJ.25.0280 and LinJ.27.0140 without further annotation on TriTrypDB. Forty-
one SNPs occurring in coding regions and fixed only in Del isolates affected annotated
proteins (Supplementary Tbl. 3.3) but none deviated from neutrality in site-wise Fsr
differentiation tests (see BayeScan and alternative selection analyses (including also non-
fixed variants) in Supplementary Fig. 3.2 and Supplementary Tbl. 3.4). Forty-two coding
regions showed significant copy number variation (CNV) between Del and New World
NonDel groups in haploid somy estimate (s) comparison using Mann-Whitney U tests
(Supplementary Tbl. 3.5), but reassessment by ANCOVA suggested that most of these
differences are driven by population structure, i.e., common descent. Supplementary Fig. 3.3
illustrates how CNV profiles cluster by geographic origin, and geographic origin correlates
to chr31 read-depth profile. The five coding regions for which s remained significantly
differentiated between Del and New World NonDel groups after controlling for geographic
origin encode amastin-like protein, nucleoside transporter and paraflagellar rod protein
paralogs (see asterisked columns in Supplementary Fig. 3.3). Effect size, however, is low

(0.317 <]As| £0.552) (Supplementary Tbl. 3.5).

116



Figure 3.1 Different read-depth profiles found in L. infantum isolates from Brazil. Del isolates contain
a > 12 kb deletion between 1.122 Mb and 1.135 Mb on chr31 (e.g., Del_MT_3219 in the left graph).
NonDel isolates do not contain the deletion, showing full read-depth at the locus (center graph). HTZ
isolates are heterozygous for the deletion, with read-depth dropping to ca. 50% (right graph).
Quantitative PCR confirmed heterozygosity at the deletion locus in monoclonal HTZ subcultures.
MIX isolates appear to contain a mixture of NonDel and Del or HTZ profiles based on subclone PCR
by Carnielli et al. (2018)2%8. However, full read-depth is observed at the deletion locus in all MIX
isolates except in MIX_PI_05A and MIX_PI_08A (showing ca. 75% read-depth — see Supplementary
Fig. 3.4). This suggests that NonDel cells are more abundant than Del and/or HTZ cells within MIX
isolates. Circle radius indicates the number of isolates (each from a different canine or human host)
representing the study site. Dotted circles represent study sites where multiple read-depth profiles
occur (see table inset). Fill color indicates the majority read-depth profile at such study sites.

3.4.2 Partial deletion genotypes occur in sympatry with Del and NonDel isolates

Six L. infantum samples sequenced in this study had an intermediate read-depth profile
within the chr31 deletion site (Supplementary Tbl. 3.1). In such genotypes, sequences
mapped to the deletion site achieve approximately 50% read coverage relative to the rest of
the chromosome (Supplementary Fig. 3.4), suggesting one of two scenarios: an abundance
of balanced heterozygous cells or a mixed population of Del and NonDel isolates. We
therefore extracted DNA from eleven monoclonal subcultures established from two isolates
representing putative heterozygotes (IOCL 2949 and 3134) and measured relative abundance
of the deletion target by qPCR. Results from ten monoclonal subcultures showed a reduction

of ca. 50% in the abundance of the amplified target sequence relative to the NonDel
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representative NonDel MS 2666 (Fig. 3.2), confirming the presence of cells heterozygous
at the deletion locus as opposed to a mix of (homozygous) Del and NonDel genotypes. Clone
2949 G1 showed 25% relative target amplification (Fig. 3.2b), suggesting the presence of
three chromosome copies with the deletion, and one copy without. Subpopulations with
different levels of heterozygosity appear to occur but ‘equivalent’ heterozygotes — i.e., cells
in which two copies of chr31 carry the deletion, and two copies do not — appear most
abundant based on read-depths of DNA sequenced from the parental culture (Supplementary
Fig. 3.4). Apart from these six isolates (hereafter termed ‘HTZ’), seven isolates sequenced
by Carnielli et al. (2018) simultaneously showed Del and NonDel deletion site PCR
amplicons?® but ca. 75 — 100% read-depth within the deletion site (Supplementary Fig. 3.4).
The authors were not conclusive about whether these samples represented single or mixed

isolates; we therefore refer to them hereafter as ‘MIX’.
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Figure 3.2 Quantitative PCR confirms that intermediate read-depth profiles represent heterozygous
deletions in L. infantum clones. a HTZ Pl 2949 and HTZ MT_3134 were selected as
representatives of isolates for which read-depth drops to ca. 50% between 1.122 Mb and 1.135 Mb
on chr31 (see Supplementary Fig. 4). DNA from monoclonal subcultures established from these two
isolates was analyzed in qPCR targeting LinJ.31.2380 (within the chr31 deletion site) and
Lind.31.2330 (downstream of the chr31 deletion site). Differences in Ct values for LinJ.31.2330
between each HTZ sample and the NonDel reference (NonDel_MS_2666) were used to normalize
a fold change estimate at LinJ.31.2380 based on the AACt method by Livak and Schmittgen
(2001)46¢, Student’s t-test was applied to test whether fold change estimates obtained from triplicate
reactions differed significantly from the 1:1 ratio represented by the reference sample. Results were
considered significant at p < 0.05 (*) and indicate that intermediate read-depth profiles represent
abundant heterozygous deletions as opposed to mixtures of deletion-carrying and non-deletion type
cells within isolates. b Fold change was calculated the same way for monoclonal HTZ subcultures
using the parental isolate as the reference. Results indicate that ‘unbalanced’ heterozygotes also
occur, e.9., 2949 G1 appears to contain three chromosome copies with the chr31 deletion, and one
copy without.
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3.4.3 HTZ isolates represent the hybrid offspring of Del and NonDel isolates

Given the vast geographic range occupied by Del isolates (Fig. 3.1) and its broad overlap

467218 e considered the

with that of the parasite’s new vector species, Lu. longipalpis
possibility of independent deletion emergence as an adaptive process recurring frequently
across the American continent. We hypothesized that HTZ isolates represent former NonDel
isolates currently undergoing a step-wise deletion process — as in the non-equivalent HTZ
clone 2949 G1, and that these later give rise to homozygous variants by biased mitotic
replication, i.e., haplotype selection?®?. Following ADMIXTURE analysis (Supplementary
Fig. 3.5), however, in which HTZ MT 3134, HTZ MT 3135, HTZ MT 3137,
HTZ MT 3224 and HTZ SP 3254 (i.e., all HTZ samples except HTZ PI 2949) received
simultaneous Del + NonDel group assignment, we also considered the alternate hypothesis
that HTZ isolates represent hybrid offspring forming at contact zones between Del and

NonDel groups (Fig. 3.1). Support for this alternate hypothesis quickly accumulated through

several analyses and metrics.

HTZ samples showed marked, statistically significant reductions in total homozygosity and
Fis values (which describe the extent to which individual heterozygosity is reduced by
inbreeding) relative to Del and to New World NonDel isolates (Fig. 3.3a, Supplementary
Tbl. 3.6). Median Fis was lowest in HTZs (relative to Del, New World and Old World
NonDel groups) in 30 of 36 chromosomes (Fig. 3.3b). Except for HTZ PI 2949, HTZs
occurred in peripheral positions relative to monophyletic Del subclades in maximum-
likelihood phylogeny (Fig. 3.4) and showed intermediate axis positions in PCoA (Fig. 3.5a).
We also constructed neighbor-joining trees from phased chromosomes (Supplementary Fig.
3.6), and homologous haplotypes of HTZ isolates divided between Del and Mato Grosso Do
Sul NonDel clades, consistent with genome fusion or a Mendelian mechanism of genetic
exchange with back-crossing or inter-breeding among hybrid isolates. Fsr differentiation to
Mato Grosso do Sul samples also fluctuated among HTZ chromosomes, consistent with
chromosomal reassortment as a result of mating between Del and NonDel isolates
(Supplementary Fig. 3.7). We further examined a potential hybrid origin by comparing the
phylogenetic positions of HTZ isolates from Mato Grosso with those generated by simulated
sexual mating between populations from Mato Grosso and nearby Mato Grosso do Sul.
Phylogenetic positions for simulated hybrids corresponded to those observed for HTZ
isolates (Fig. 3.5b). In these simulations, we also hypothesized the presence of second-
generation (F2) hybrids, that is, we simulated back-crossing and hybrid inter-crossing to

account for the origin of Mato Grosso samples Del 3223 and NonDel 3210 (respectively).

119



Inbreeding coefficient (F|g)

0.4

0.2

0.0

‘0.2

-0.4

These two samples are not heterozygous for the deletion on chr31 but show aberrant
genome-wide heterozygosity and Fis (Fig. 3.3). Phylogenetic positions of the simulated F»
hybrids matched positions of Del 3223 and NonDel 3210. Similar F> hybridization events
may also explain the outlying phylogenetic positions of samples such as NonDel MG 14A
or NonDel MS 2688 (Figs. 3.4 and 3.5a, and Supplementary Fig. 3.6).
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Figure 3.3 Homozygosity relative to Hardy-Weinberg expectations in New and Old World L. infantum
isolates. a The box plot shows median and interquartile ranges of genome-wide inbreeding
coefficients (Fis). Values are generally high for New World isolates. Values for HTZ isolates, however,
all occur below the second quartile and strong excess heterozygosity is suggested in HTZ_MT_3134,
HTZ_MT_3135, and HTZ_MT_3137. b Relatively low genome-wide Fis in HTZ isolates is not driven
by values from a subset of chromosomes. Values appear low throughout the genome. Circle fill color
indicates New vs. Old World origin and read-depth profile on chr31.
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Figure 3.5 Metric multidimensional scaling, simulated mating and tree-to-graph conversion suggest
admixture and hybridization between Del and NonDel L. infantum groups. a Metric multidimensional
scaling clearly separates New and Old World (NW and OW) isolates on two axes of variation
(goodness-of-fit = 0.40). NonDel isolates from Mato Grosso do Sul (MS) and Del isolates from Rio
Grande do Norte (RN, see asterisk) and Mato Grosso (MT, see double-asterisk) position at opposite
ends of axis 1, the primary axis of divergence within and between NW populations. HTZ isolates
occur at intermediate positions (see pink circles) between these dissimilar groups. Othe r isolates
with such intermediate positions are labelled and may also represent mating events between
dissimilar groups. Grey, white and cyan fill colors, respectively, indicate NonDel, Del and MIX read-
depth profiles found in the NW. Circles for OW (NonDel) isolates are green. Five outlier isolates are
excluded as in Fig. 3.4. b Neighbor-joining positions of simulated hybrids (blue font, left tree)
correspond to those of observed HTZ isolates (pink font, right tree) from MT. Hybrids were simulated
in two steps. Random 50% haplotype contributions were first drawn from Del and NonDel isolates
observed in MT and MS. The resultant offspring genotypes were then either let diversify through
random mutation or subjected to a second round of Mendelian recombination as before. The same
tree topology resulted in each of 100 simulation replicates. ¢ Given that mating can create non-
treelike divergence patterns within species, TreeMix*58 was used to search iteratively for up to five
migration edges that improve the fit of a maximum-likelihood tree built based on Gaussian
approximation of genetic drift among isolates from MT, MS, RN and OW groups. This input tree
(black edges) suggests dichotomous differentiation into MT/RN and MS/OW clades and has a log-
likelihood of 84.9206. Tree-to-graph conversion by addition of a migration edge from MS to MT
increases log-likelihood to 84.9775. No other edges further increase the fit of the input tree. A four-
population test*68 also supports post-split admixture between MS and MT or RN because differences
in allele frequencies between MT and RN isolates correlate with those within the other population
pair (Fs-statistic = 5 - 10-5, Z-score = 3.51).
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3.4.4 Possible Del paraphyly and phenotypic consequences of the chr31 deletion

Although the above analyses indicate that HTZs in this sample set represent hybrids, not
intermediate forms within a process of stepwise mitotic deletion, they do not exclude that
such mitotic deletion is recurrently creating Del genotypes (via intermediate forms)
throughout Brazil. In SNP-based phylogeny (Fig. 3.4), New World isolates branch out from
within the Old World clade into two main clusters, one containing divergent isolates from
Mato Grosso do Sul, the second containing all other sample genomes. Within this second
cluster, Del isolates do not form a private clade (see phylogenetic positions of NonDel
isolates from Maranhdo and Piaui, as well as HTZ PI 2949). This paraphyly contradicts the
hypothesis that the chr31 deletion represents a rare ancestral mutation whose present
abundance mimics the results of frequent selection but is actually a consequence of founder
effect, i.e., success due to emergence in small populations before or during early phases of
range expansion. We also find that the deletion locus start/stop coordinates differ among Del
subgroups (Supplementary Tbl. 3.2), and stop coordinates statistically correlate with sample
phylogenetic positions (Blomberg’s K = 3.192, p = 0.001)*%, further evidence against
ancestral deletion and common descent. Proliferation of Del genotypes against different
genetic backgrounds suggests recurrent selection, which implies that locus deletion alters
phenotype. We performed an assay for ecto-3’-nucleotidase activity on Del, NonDel and
HTZ isolates from different geographic regions (Fig. 3.6a). Results demonstrate complete
loss of function in Del isolates by comparison to HTZ and NonDel parasites (p < 0.05).
Significant inter-individual variation also occurs in ecto-3’-nucleotidase activity between
NonDel isolates NonDel MS 2664 and NonDel MS 2666 (p < 0.05). We also measured
ecto-ATPase activity (Fig. 3.6b), thought to be involved in purine salvage pathways
alternative to those of ecto-3’-nucleotidase*’®*"!, We found greater ecto-ATPase activity

among Del vs. NonDel isolates (p < 0.05).
3.4.5 Pattern-process modelling and the biogeography of L. infantum diversity

Parasite isolates from Mato Grosso do Sul sequenced in this study stand out in their complete
lack of Del genotypes and their basal phylogenetic positions in Fig. 3.4. Compared to the
rest of the New World sample set, this outgroup also showed higher nucleotide diversity ()
per site (0.046 vs. 0.061, respectively), more than twice as many private SNP sites per
sample (15.3 vs. 31.8) and lower Fsr-differentiation from Old World isolates (0.413 vs.
0.303) (Tbl. 3.1). We therefore hypothesized (H1) that Mato Grosso do Sul isolates represent
a separate, more recent introduction to Brazil or that (H2) they stem from the same

introduction event as other New World isolates of the sample set but experienced distinct
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Figure 3.6 Ecto-3’-nucleotidase and ecto-ATPase activity correlates to read-depth profiles on chr31.
a Ecto-3'-nucleotidase activity was quantified by measuring the rate of inorganic phosphate (Pi)
release during adenosine 3'-AMP hydrolysis as described in Freitas-Mesquita et al. (2016)*47. Bar
plots show mean and standard error for three replicate assays. Student’s t-test was applied to test
for statistical significance between pairs of samples at p < 0.05 (*). Results indicate complete loss of
function in Del isolates and no significant differences between NonDel isolates and monoclonal HTZ
subcultures. b Ecto-ATPase activity was quantified with the same protocol except replacing 3’-AMP
with equimolar ATP and Mg?*. T-tests between NonDel and Del isolates suggest higher ecto-ATPase
activity in Del than in NonDel isolates, but larger samples sizes are required to substantiate the effect.

demographic processes in subsequent dispersal. In either case, considering overall New
World monophyly and 164 (of 2,383) SNP sites fixed across all New World samples, but
not also fixed across all Old World samples, both Mato Grosso do Sul and non-Mato Grosso
do Sul populations likely originate from a common, unsampled Old World region. Treating
Mato Grosso isolates as representative of the wider non-Mato Grosso do Sul clade, we used
pattern-process modelling to test demographic histories implied by hypotheses Hi and H».
H; implies a ‘secondary contact’ (SC) model of divergence, whereby gene flow between
Mato Grosso and Mato Grosso do Sul fully ceases but is later reestablished, as would be the
case if there had been distinct introduction events of L. infantum into the Americas. Ho
implies an ‘isolation with migration’ (IM) model of divergence, whereby contact never
completely ceases, as would likely occur if samples from Mato Grosso do Sul and Mato
Grosso had diverged following a single introduction event to Brazil. For both SC and IM
models, we simulated individual genome-wide SNP diversity in three variations relating to

bottleneck (yes/no in Mato Grosso founder population) and admixture type (hard
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Table 3.1 Population genetic descriptive metrics for New World and Old World L. infantum groups.
HTZ and MIX genotypes are not used in this analysis. Abbreviations: MS (Mato Grosso Do Sul); non-
MS (New World, excluding MS); n (sample size); K (mean number of alleles, per locus); Het. (mean
heterozygosity); PS (total polymorphic sites); PRS (private sites, per sample); m (nucleotide
diversity); Fst (between-group fixation index).

Group (n) K Het. PS PRS L toFgW toFRIIS to nI(:)SnT-MS
non-MS (80) 2.01 0.122 1782 15.3 0.046 0.419 0.495 0.000
MS (11) 2.00 0.324 903 31.8 0.061 0.304 0.000 0.495
Old World (17) 2.00 0.195 3069 149.1 0.125 0.000 0.304 0.419

introgression and/or permanent migration vs. temporary genetic exchange). We also ran
simulations for two implausible models of Mato Grosso — Mato Grosso do Sul divergence,
‘strict isolation’ (S, i.e., no contact between populations) and ‘ancient migration’ (AM, i.e.,
no contact after an early period of contact between populations). These served as controls
for the ABCRF?!® method, which uses random forests to rank the fit of observed vs.
simulated summary statistics. Simulations for Mato Grosso — Old World and Mato Grosso
do Sul — Old World population pairs, both assumed to follow an ‘ancient migration’ with
bottleneck (AMypo) model of divergence, provided additional method control (see
fastsimcoal2’!®> template files and model illustrations in Supplementary Tbl. 3.7 and
Supplementary Fig. 3.8). Following expectations, the AMypot model achieved highest
posterior probability support for both Mato Grosso — Old World and Mato Grosso do Sul —
Old World divergence, with Mato Grosso experiencing a tighter bottleneck than Mato
Grosso do Sul (-80% vs. -71%) at the time of separation from the ancestral Old World group
(Tbl. 3.2). Also as expected, AM and SI models received lowest (near zero) support for the
Mato Grosso — Mato Grosso do Sul population pair, but support values of the remaining IM
and SC models did not clearly favor H; or H> (Tbl. 3.2). The top-ranked IM base model
(without explicit bottlenecking in the early Mato Grosso population) scored only slightly
higher than SCpomig (no explicit bottleneck in the early Mato Grosso population, and no
complete migration when contact is later reestablished with Mato Grosso do Sul). Neither
achieved high posterior probability support given competition from highly similar variations
of each model (Tbl. 3.2). Parameterization of the top-ranked IM model indicated unbalanced
gene flow (MIG), predominantly to Mato Grosso from Mato Grosso do Sul (MIGmato Grosso
do Sul - Mato Grosso = 0.025 vs. MIGMato Grosso -~ Mato Grosso do sul = 0.004) (Tbl. 3.2). Gene flow in
this direction also significantly increased likelihood in phylogenetic tree optimization by

graph conversion using TreeMix*®

, complemented by F4 statistics support (Fig. 3.5¢).
Definitive evidence for a single or multiple L. infantum invasion events into Brazil, however,

could not be found.
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Table 3.2 Demographic simulation in fastsimcoal23'5 and model selection by Approximate Bayesian
Computation via Random Forests (ABCRF)3'6. In fastsimcoal2 simulation, values for past and
present population sizes were drawn randomly from a uniform distribution between 100 and 108
individuals. Values for time of secondary contact were drawn randomly from a uniform distribution
between 0 and 2:10* generations before present. Values for relative migration rates between
populations were drawn randomly from a log-uniform distribution between 10-9 and 0.1. Values for
bottleneck size were drawn randomly from a uniform distribution between 0.05 and 0.5. The mutation
rate was fixed at 1.99 -10-° mutations per bp on all chromosomes. The ten different demographic
models are illustrated in Supplementary Fig. 3.8 and template file content is provided is provided in
Supplementary Tbl. 3.7. Abbreviations: CV (classification vote, i.e., the number of times a model is
selected in a forest of 1,000 trees (the model with the most votes corresponds to the model best
suited to the dataset)); PP (ABCRF approximation of the posterior probability of the selected model);
FOU (bottleneck size, i.e., the fraction of prior population size at the end of the bottleneck); Ndraws
(number of parameter draws simulated by fastsimcoal2 as input for ABCRF); MIGx>>>y (migration rate
from x to y); Pop. (population); MT (Mato Grosso); MS (Mato Grosso do Sul); OW (Old World).

Model Pop.1/Pop.2 cv Ndraws
g & AM MT / MS 0.020 474177
o IMbot MT / MS 0.151 452533
@ ;’ IMchange MT / MS 0.089 476483
83 IM MT / MS 0.215 474263 *selected model
S 3 sC MT / MS 0.125 473082
S s SCbotnomig MT / MS 0.187 427249
= SCromig MT / MS 0.201 474782
5= s MT / MS 0.012 466136
n O
Ol _
g0 PP = 0.282
== MIGmTs>>>ms = 0.004

MIGms>>>mt = 0.025

c o Model Pop.1/Pop. 2 Ccv Ndraws
g5 AMbot MT / OW 0.304 432323  *selected model
25 AM  MT/OW 0.186 458125
g § |Mchange MT / OW 0.106 470330
S IM MT / OW 0.215 459566
SE SC MT / OW 0.161 421405
4 SCromig MT / OW 0.013 464907
o= Slbot MT / OW 0.003 385170
°9 S MT / OW 0.012 409244
o S
8e =
1= PP =0.485

FOU = 0.204
3 3 AMbot MS / OW 0.385 413704 *selected model
£5 AM  MS/OW 0.161 472457
=& IMchange MS / OW 0.145 473388
SRS IM MS / OW 0.170 471073
SE sC MS / OW 0.025 471677
Q. SCromig MS / OW 0.031 472251
o= Slbot MS / OW 0.035 463789
°9 Sl MS / OW 0.048 457084
o S
o @©
20 PP = 0.521

=
FOU = 0.292
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3.5 Discussion
3.5.1 Principal findings

Our results reveal the widespread distribution of a major genetic alteration found in New
World L. infantum isolates, clarifying that a multi-kilobase, loss-of-function deletion on
chr31 predominates in the South(east), East as well as in the Northeast of Brazil. Additional
point sampling also detected the deletion in distant Amazonas and as far north as Honduras,
but not in Panama. Our observations do not suggest a continuum in deletion rate as
previously proposed, showing instead an intermittent preeminence of sometimes closely
related, other times highly divergent NonDel isolates, particularly in Piaui and Mato Grosso
do Sul. Deletion size and phylogenetic variation suggest that recurrent evolution may have
led to the widespread, yet discontinuous preponderance of Del genotypes we observe. The
New World parasite population has, however, undergone recent invasive expansion, which,
in the most parsimonious case, involved just a single, not multiple, introduction events.
Confirming paraphyletic deletion origins is especially complicated by the frequent
outcrossing and inbreeding events we expose among deletion-carrying and non-deletion

parasite genomes.
3.5.2 General discussion

In microbial ecology, but also at various other scales, species invasion or population
expansion creates the unique opportunity for rare, non-adaptive mutations to spread rapidly

472475

across new territories by riding expanding wave fronts , where population density is

low and growth rate is high*’®

. Genetic diversity patterns in this study, however, are not
clearly symptomatic of such so-called ‘allele-surfing’ effect. Rather, we find evidence for
recurrent independent deletion events based on subtle, yet significant deletion stop site
differences among geographically separated parasite groups and phylogenetic nesting of
NonDel genotypes (from Piaui and Maranhao) within what would otherwise appear as a
monophyletic deletion-carrying clade. Results from our phenotypic assays also suggest that
alternate, compensatory metabolic pathways may exist to counteract the elimination of ecto-
3’-nucleotidase, for which Del parasites showed complete loss of function despite the
presence of JPCM5-like (but apparently pseudogenic) paralogs on chromosome 12. Ecto-3’-
nucleotidases participate in purine salvage essential to trypanosomatid survival*’’*’® but also
act as virulence factors during infection of mammalian hosts*’%*”°_ It would be interesting to
test for virulence differences in relation to the increase in ecto-ATPase levels we observe

and whether reduced virulence or antigenicity might confer positive fitness effects within

vertebrate and invertebrate phases of the life cycle. Natural selection may favor reduced
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virulence in chronic infections with low transmission rates™, as is the case for VL in

1197,481 1193

Brazi , where symptomatic hosts are also targeted by disease contro

Considering the possible compensatory elevation in ecto-ATPase activity we measured at
the phenotypic level, we also scanned for possible compensatory gene CNV in Del isolates.
CNV-based UPGMA placed NonDel samples from Mato Grosso do Sul and Minas Gerais
(NonDel MG 14A) into separate basal clades while keeping NonDel isolates from Piaui
and Maranhao clustered together with Del isolates from the same northern states. This
geographically correlated CNV topology mirrors that of the SNP-based phylogeny and thus
suggests that (baseline) gene copy numbers or deletion/amplification programs triggered in
vitro are conserved among related isolates. The latter phenomenon was also recently
proposed in Bussotti et al. (2018)*™. Our results do not suggest that a single CNV regime
underlies enzymatic changes (e.g., ecto-ATPase upregulation) that might be occurring to
compensate loss of function at the deleted locus on chr31. Such compensation may occur
through unique (i.e., sample-specific) CNV solutions or by various other epigenetic, post-
transcriptional or post-translational effects. The five copy number differences showing
statistical significance in our ANCOVA analyses do nevertheless deserve further
investigation. Effect sizes were small but the transport (LinJ.08.0700, LinJ.15.1240,
LinJ.15.1250) and cytoskeletal (LinJ.29.1880, LinJ.29.1890) proteins involved carry out
vital cell functions, variation in which has also been linked to drug resistance in previous

research?3> 484,

No coding region SNPs and only one coding region INDEL variant (affecting hypothetical
protein LinJ.25.0280) was found to differ among Del and New World NonDel groups. As
was the case with CNV, the statistical association of this 15 base-pair inframe deletion on
chromosome 25 was driven by common descent, not by the presence of deletion on chr31.
This INDEL variant did not occur in NonDel isolates from Mato Grosso do Sul but appeared
fixed across the Del + nested NonDel clade and thus most likely represents a mutation that

arose soon after the major population subdivision that defines this dataset began.

This major subdivision of samples from Mato Grosso do Sul relative to all others analyzed
in the study raises the question as to whether two separate events could have introduced L.
infantum into Brazil, possibly one arriving via Spanish territories to the West, the other
arriving at Portuguese ports in the Northeast of the continent. In our pattern-process
modelling, however, the highest ranked and most parsimonious model proposes divergence
from a single introduction event, with distinct bottleneck intensities in the diverging
populations explaining different levels of nucleotide diversity and genetic distance to Old

World isolates. An abundance of fixed polymorphisms shared between these divergent New
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World groups, but unfixed in Old World isolates, further supports the model. To fully
confirm the occurrence of a single introduction, however, further L. infantum sampling from
Iberia, coastal Africa, western Brazil and its neighboring states is likely required. It is also
possible that Old World L. infantum infections were contracted in trading or departure areas
shared among distinct colonizing groups, such that even high spatial sample effort could fail
to distinguish a single or separate introduction events. Another possibility is that New World
isolates originate from Old World regions where the disease has since been eradicated. In
such cases, spatially explicit (e.g., landscape genetic simulation) modelling methods®® within
the New World could become useful, e.g., by testing for differences in dispersal
directionality between parasite populations in western vs. eastern Brazil. Another fruitful
approach might consist in assessing epidemiological phenotypes in the divergent
subpopulation from Mato Grosso do Sul. If these NonDel genotypes do not represent a
distinct introduction source, perhaps they have diverged so markedly due to unique selection
pressures in this part of Brazil. Previous microsatellite-based studies which also detected
strong divergence in Mato Grosso do Sul parasites hypothesized that the presence of an
alternative VL vector, Lu. cruzi, might substantially modify L. infantum genetic diversity in
the region, especially near Corumba'®2*8, Comparing Lu. cruzi infection and transmission

success by local NonDel vs. other (Del) L. infantum genotypes are interesting next steps.

Finally, this study also presents the extraordinary finding that mating events are occurring
abundantly in areas of contact between divergent L. infantum isolates, specifically in the city
of Rondondpolis, located along the interstate highway between Cuiaba (Mato Grosso) and
Campo Grande (Mato Grosso do Sul). The evidence for hybridization here is unmistakable:
highly heterozygous genomes with half-deletion profiles on chr31 and phased haplotypes
that divide between putative, significantly less heterozygous parental groups. These HTZ
isolates occupy long-branching outgroup positions in phylogenetic trees and present
intermediate PCoA axis values relative to Del isolates from Mato Grosso and NonDel
isolates from Mato Grosso do Sul. They do not show higher aneuploidy rates, though

cytometric measurement of total DNA content was not performed.

The particular case of hybridization we present here provides a compelling example of the
evolutionary importance of genetic exchange between divergent lineages. For a strictly
clonal parasite, the homozygous deletion mutation central to this study would be absolutely
irreversible: zero alleles remain at the locus in Del isolates. Through hybridization, however,
even these completely deleted alleles can reemerge — and with immediate effect on offspring
phenotype: we report a return to function in ecto-3’-nucleotidase, a potential virulence

factor, and more importantly, changes to miltefosine sensitivity are directly implied®*®>%.
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Our results closely mirror recent work by Cotton et. al (2019) 2%, one of only two studies to
analyze putative hybrid field isolates using WGS. Similar to our hypotheses on second-
generation hybrids (e.g., NonDel MT 3210 and Del MT 3223) occurring beside Fi-like
crosses such as HTZ MT 3134, Cotton et al. describe asymmetrical ancestry components
in L. donovani that point to intercrossing and backcrossing subsequent to a ‘founding’
hybridization event. Like theirs from Ethiopia, our dataset also appears to contain parental
genotypes and covers areas where distinct vector and parasite populations are prone to
connect. In contrast to the divergent crossing events our study highlights from such areas,
evidence for less conspicuous, endogamic forms of mating is only weak. Moderate
homozygosity deficits (median Fis = -0.251) in Rio Grande do Norte, our largest sympatric
group, do raise the possibility that inbreeding is slowing heterozygosity accumulation in
Brazilian L. infantum genomes, but this process is unlikely occurring as frequently as in
other species of the Viannia subgenus®***3%%, We should not discard the possibility of
cryptic mating and its potential to mislead phylogenetic inference, including signs of Del
paraphyly observed in Fig. 3.4. Further sampling is therefore necessary to confirm
relationships between Del and closely-related NonDel isolates from, e.g., Piaui and
Maranhdo. NonDel isolates from these two states do not diverge strongly from the
surrounding clade (Supplementary Fig. 3.7), including at ‘Del-distinctive’ sites
(Supplementary Fig. 3.9), but is it nevertheless possible that their nested positions (see dotted

circle in Fig. 3.4) are a consequence of cryptic backcrossing events?

Many open questions remain regarding the chr31 deletion anomaly, likewise about the
precise Old World origins of complex L. infantum genetic diversity in Brazil. Taken
together, this study clearly demonstrates how much L. infantum research can learn from
scrutinizing the country’s underappreciated parasite diversity and the demographic
processes that contribute to strong population structure and hybridization at divergent
contact zones. Recognizing strong, yet changeable population structure is critical to VL
control. Left ignored or unobserved, it can confound covariation measured between parasite

genetic and phenotypic traits or lead to failure in the application of diagnostics and drugs.
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3.6 Supplementary figures and tables
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Supplementary Figure 3.1 Chromosomal copy number variation in New and Old World L. infantum
isolates. To estimate chromosomal copy numbers for each sample, we calculated mean read-depths
for successive 1 kb windows on each chromosome. We then calculated the median of these window
means on each chromosome and let the 40th percentile (p40) of the sample’s 36 chromosomal
medians represent expectations for the disomic state. Somy estimates for each chromosome by
median normalization to p40 are plotted in the heatmap. Isolates are ordered on the y-axis by
UPGMA clustering of Bray-Curtis dissimilarities. The adjacent column indicates read-depth profiles
on (tetrasomic) chr31 according to the color key at left. No correlation to somy is observed.
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Supplementary Figure 3.2 Low inter-locus variance in Fsr differentiation between Del and NonDel
L. infantum isolates. a Fst values at genome-wide SNP loci range between 0.456 and 0.501. Log1o
g-values (x-axis) indicate the level of support for selection at each locus. None are significant based
on a false discovery rate (FDR) of 5%. SNP sites with genotypes missing in > 50% individuals are
excluded from analysis. b Fst values at genome-wide INDEL loci range between 0.152 and 0.511.
Fourteen outlier loci show significant support for selection at FDR = 5%. Only one of these outliers
occurs within coding sequence (blue font) and represents a disruptive inframe deletion in
LinJd.25.280. This gene encodes a protein of unknown function on chromosome 25. INDEL sites with

genotypes missing in > 50% individuals are excluded from analysis.
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Supplementary Figure 3.3 Gene copy number variation in Del and NonDel L. infantum isolates from
the New World. We obtained haploid somy estimates (s) by dividing each coding region’s median
read-depth (c) by the median of all ¢ values across the chromosome. The heatmap plots s values for
all coding regions that differed significantly between Del and NonDel isolates in the New World (see
Mann-Whitney U statistics in Supplementary Tbl. 3.5). Isolates are ordered on the y-axis by UPGMA
clustering of Bray-Curtis dissimilarities. Circles at the tips of the tree indicate read-depth profiles on
chr31. The adjacent column indicates geographic origin according to the color key below the
heatmap. Somy profiles cluster predominantly by geographic origin and only indirectly by chr31 read-
depth profile. Only five coding regions differ significantly between Del and NonDel groups after
controlling for geographic origin by analysis of covariance (see asterisks). Numbers above the
heatmap columns indicate the proportion of uniquely mapping nucleotides within each coding region
(see Methods). Poor mappability represents an intrinsic property of genes occurring in multiple
paralogs and may explain instances where s > 4 occurs in many samples (i.e., purple columns).
Isolates from Teixeira et al. (2017)%57 (see Supplementary Tbl. 3.1) were excluded from gene copy
number analyses because reverse reads were not made available in public sequence archives.
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Supplementary Figure 3.4 Sequence read-depth profiles on chr31 in MIX and HTZ L. infantum
isolates. Read-depth drops to ca. 50% between 1.122 Mb and 1.135 Mb in all six HTZ isolates.
Quantitative PCR confirmed partial deletion at this locus in HTZ cultures derived from single cells.
MIX isolates, on the other hand, appear to contain a mixture of NonDel and Del or HTZ profiles based
on subclone PCR by Carnielli et al. (2018)2%8, NonDel cells likely predominate in these mixtures given
that full read-depth occurs in all but MIX_PI_05A and MIX_PI_08A. Del and HTZ cells may occur
more frequently in the latter two isolates.
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Supplementary Figure 3.5 Estimated ancestry proportions in New and Old World L. infantum isolates. The ADMIXTURE program® estimates individual ancestry
proportions by optimizing likelihood in the parametric admixture model introduced by Pritchard et al. (2000)332. In this model, the number of subpopulations (k) is defined
a priori and alleles within each individual represent binomial samples from the allele frequencies specific to each subpopulation. Individual ancestry proportions and
subpopulation allele frequencies are jointly estimated during model optimization to the genotypes observed. The bar plot summarizes ADMIXTURE results for the L.
infantum SNP dataset at k = 3. We chose k = 3 based on complementary PCoA analyses (see subsequent figures and text) and because cross-validation error (crv) is
low without overfitting the data (right plot). Each column represents one L. infantum isolate and relative fill color quantities indicate estimated ancestry proportions. Blue
predominates in isolates from the Old World while green and red correspond to New World subpopulations. Several isolates from Mato Grosso and Mato Grosso do
Sul show substantial quantities of both red and green, symptomatic of admixture between dissimilar subpopulations in these adjacent states of Brazil. Analyses used
all SNP loci for which genotypes are called for all individuals.
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Supplementary Figure 3.6 Neighbor-joining trees built from phased chromosomes suggest that heterozygous loci in HTZ isolates originate from genetic exchange
between divergent haplotypes. Examples are shown from chromosomes 25 and 33. Each tree contains two phased haplotypes per isolate (see label suffixes ‘A’ and
‘B’). Both A and B haplotypes of NonDel isolates from Mato Grosso do Sul (MS) occur within a clade that splits away basally from that containing most other haplotypes.
HTZ isolates from the neighboring state of Mato Grosso (MT) often show one haplotype clustering towards this divergent MS clade and the other haplotype showing
similarity to Del haplotypes found in MT and other parts of Brazil (see pink circles). A similar trend is observed for isolates such as Del_MT_3223 and NonDel_MT_3210,
possibly the result of hybridization with unsampled lineages or secondary hybridizations involving progenitors of this study’s sample set.
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Supplementary Figure 3.7 NonDel L. infantum isolates from Piaui and Maranh&o show low divergence to Del isolates on all chromosomes. The top panel shows Fst
(Weir and Cockerham) for NonDel_MA_01A, NonDel_MA_03A, NonDel_PI_07A, NonDel_PI_12A and NonDel_PI_2972 relative to Del isolates that surround this nested
NonDel group in the phylogenetic tree provided in Fig. 3.4. These are Del_MA_04A, Del_MA_07A, Del_MG_19A, Del_PI_02A, Del_PIl_11A, Del_PI_3037,
Del_DF_2898, Del_DF_2919 and Del_SP_3257. Boxplots indicate low Fst medians (bold horizontal bars) on all chromosomes, inconsistent with the hypothesis that
NonDel isolates observed in Piaui and Maranh&o represent backcrossed hybrid genotypes. Patterns of Fsr for putative hybrids (HTZs) from Mato Grosso (MT) relative
to NonDel isolates from Mato Grosso do Sul (MS) are distinct. Values are less stable among chromosomes and several medians exceed 0.4 (see red fill).
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Supplementary Figure 3.8 Ten scenarios of pairwise divergence simulated using fastsimcoal23'5,
The first set of scenarios depicts divergence between L. infantum populations from Mato Grosso
(MT) and Mato Grosso do Sul (MS). The second set depicts divergence between populations from
MT and the Old World (OW). The third set depicts divergence between populations from MS and
OW. Corresponding input syntax is provided in Supplementary Tbl. 3.7. Dashes horizontal lines
indicate gene flow. Blue shapes indicate bottleneck events. Time runs from top (ancestral events) to

bottom (present).
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Supplementary Figure 3.9 Visualization of biallelic single-nucleotide polymorphisms (SNPs) prevalent (> 80%) in Del but uncommon (< 50%) in New World NonDel L.
infantum isolates. These 102 ‘Del-distinctive’ variants are listed in ascending order, i.e., the top rows representing SNP sites on chromosome 2 and the bottom rows
representing sites on chromosome 36. Each column represents the concatenated genotypes of one L. infantum isolate. Heterozygous (0/1) genotypes are colored in pink,
homozygous reference (0/0) genotypes in blue and homozygous non-reference (1/1) genotypes in green. This format helps visualize patterns of fixed (perhaps ancestral) vs.
non-fixed (perhaps convergently evolving) sequence variation in New World L. infantum groups. It also emphasizes continuous genome-wide heterozygosity in HTZ isolates.
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Supplementary Table 3.2 Boundaries of the > 12 kb deletion on chr31. Start and stop sites of the
deletion locus were determined by identifying base positions of the JPCM5 reference assembly
where read-depth increases from a continuous stretch of zero read-depth observed on chr31. They
have not yet been confirmed by amplicon analysis, e.g., sequencing across breakpoints of
homologous recombination. Samples are listed in order of ascending stop sites.

ID Start site (bp) Stop site (bp)
Del PI_3037 1122848 1135079
Del_SP_3257 1122842 1135089
Del MT_3225 1122817 1135149
Del_ MT_ 3136 1122835 1135150
Del MT_3227 1122847 1135150
Del_ RN _ 3186 1122848 1135152
Del RN 3183 1122847 1135155
Del_MT_3219 1122826 1135156
Del RN 3185 1122848 1135158
Del RJ 3634 1122751 1135158
Del Pl _03A 1122841 1135160
Del Pl 2976 1122758 1135161
Del_ MT 3138 1122843 1135161
Del RN 3176 1122836 1135161
Del RN 3178 1122846 1135161
Del RN 3182 1122847 1135161
Del_MT 3208 1122834 1135161
Del_MT_3209 1122843 1135161
Del MT 3212 1122848 1135161
Del_MT 3214 1122846 1135161
Del_MT 3223 1122847 1135161
Del_SP_3250 1122815 1135161
Del RJ 3598 1122847 1135161
Del_ MG_11A 1122848 1135161
Del_ MG_16A 1122841 1135161
Del_ MG_17A 1122842 1135161
Del_ MG_18A 1122857 1135161
Del_ MG_19A 1122840 1135161
Del_ MA_04A 1122847 1135161
Del_RJ 3015 1122834 1135161
Del HN_ 336 1122840 1135161
Del Pl 01A 1122847 1135162
Del RN 3177 1122846 1135163
Del DF 2898 1122848 1135164
Del HN_167 1122841 1135164
Del MA 07A 1122841 1135166
Del ES 3068 1122847 1135167
Del_ MG_15A 1122847 1135167
Del_MG_3379 1122842 1135168
Del_ MG_3381 1122805 1135168
Del_RJ 3635 1122842 1135168
Del RN _3335 1122815 1135169
Del_ MG_3378 1122827 1135169
Del_MG_3380 1122846 1135169
Del_ MG_12A 1122841 1135169
Del_ MG_13A 1122838 1135169
Del Pl _02A 1122848 1135169
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Supplementary Table 3.2 (continued)

Del_RS_3196 1122837 1135174
Del_PI_11A 1122841 1135175
Del_ES_2789 1122839 1135180
Del_SP_3256 1122846 1135181
Del_RN_3184 1122848 1135182
Del_RN_3187 1122845 1135182
Del_DF_2919 1122847 1135197
Del_ES_2788 1122849 1135215
Del_RN_11VLd 1122848 1135346
Del_RN_12VLh 1122848 1135346
Del_RN_13VLh 1122847 1135346
Del_RN_14VLh 1122848 1135346
Del_RN_15VLd 1122856 1135346
Del_RN_16VLd 1122847 1135346
Del_RN_17VLd 1122847 1135346
Del_RN_18Ah 1122848 1135346
Del_RN_19VLh 1122848 1135346
Del_RN_1VLh90 1122847 1135346
Del_RN_20VLh 1122847 1135346
Del_RN_2VLh90 1122883 1135346
Del_RN_3VLh90 1122848 1135346
Del_RN_4VLh90 1122868 1135346
Del_RN_5VLh90 1122848 1135346
Del_RN_6CLh 1122848 1135346
Del_RN_7VLd 1122848 1135346
Del_RN_9Ah 1122847 1135346
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Supplementary Table 3.6 Significant heterozygosity increases in HTZ and Old World L. infantum
groups. The Kruskall-Wallis rank sum test indicates that genome-wide inbreeding coefficients (Fis
values) differ among Del, HTZ, MIX, New World (NW) and Old World (OW) NonDel groups (p-value
< 0.001). This table lists Fis medians and p-values from post-hoc pairwise comparisons using the
Tukey and Kramer (Nemenyi) test. Results indicate significant Fis reductions in HTZ and Old World
NonDel groups. Hyphens replace redundant comparisons. Medians for raw counts of heterozygous
loci (Het.) are also shown. Het. values produce analogous values in Kruskal-Wallis and Nemenyi
tests (not shown).

Group MedianF;s Median Het. vs. Del vs. HTZ vs. MIX vs. NW NonDel

Del 0.293 277 - - - -

HTZ -0.284 499 <0.001 - - -

MIX 0.265 299 0.65635  0.24284 - -

NW NonDel 0.336 265.5 0.86028 <0.001 0.38029 -
OW NonDel 0.098 379 < 0.001 0.92008  0.46149 <0.001

Supplementary Table 3.7 Demographic simulation model input. Template (.tpl) files describe
demographic models and parameters of interest in fastsimcoal2315. File content unique to each of
the ten models (bold font) simulated in this study is listed below. Data type descriptions (e.g., contig
numbers and sizes, recombination and mutation rates) common to all model templates occur at the
end each .tpl file. This information is shown after the asterisked rows at the bottom of the table. Each
model is further outlined in Supplementary Fig. 3.8.

//[AMbot parameters for the coalescence simulation program fsc252.exe

2 samples to simulate

/Ipopulation effective sizes (humber of genes)

N_OW

N_MT or N_MS

/[sampless sizes and samples age

17

11 or 15, respectively

/lgrowth rates: negative growth implies population expansion
0

0

/Inumber of migration matrices : 0 implies no migration between demes
2

/Imigration matrix O

00

00

/Imigration matrix 1

0 MIG12

MIG21 0

/Inistorical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
3 historical events

TMIGO00101

TBOT110FOUO 1

TDIV101100

/Inumber of independent loci (chromosomes)

36 1
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Supplementary Table 3.7 (continued)

/[AM parameters for the coalescence simulation program fsc252.exe

2 samples to simulate

/Ipopulation effective sizes (humber of genes)

N_pop1

N_pop2

/[sampless sizes and samples age

n_pop1

n_pop2

/Igrowth rates: negative growth implies population expansion
0

0

/Inumber of migration matrices : 0 implies no migration between demes
2

/Imigration matrix 0

00

00

/Imigration matrix 1

0 MIG12

MIG21 0

/Ihistorical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
2 historical events

TMIGO00101

TDIVO11100

/Inumber of independent loci (chromosomes)

36 1

/IMbot parameters for the coalescence simulation program fsc252.exe

2 samples to simulate

/lpopulation effective sizes (number of genes)

N_MT

N_MS

/[sampless sizes and samples age

15

11

/Igrowth rates: negative growth implies population expansion
0

0

/Inumber of migration matrices : 0 implies no migration between demes
2

/Imigration matrix O

0 MIG12

MIG21 0

/Imigration matrix 1

00

00

/Ihistorical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
2 historical events

TBOTOOOFOUOO

TDIVO11101
/Inumber of independent loci (chromosomes)
361
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Supplementary Table 3.7 (continued)

/IMchange parameters for the coalescence simulation program fsc252.exe

2 samples to simulate

/Ipopulation effective sizes (humber of genes)

N_pop1

N_pop2

/[sampless sizes and samples age

n_pop1

n_pop2

/Igrowth rates: negative growth implies population expansion
0

0

/Inumber of migration matrices : 0 implies no migration between demes
3

/Imigration matrix 0

0 mig12

mig21 0

/Imigration matrix 1

0 MIG12

MIG21 0

/Imigration matrix 2

00

00

/Ihistorical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
2 historical events

TMIGO00101

TDIVO11102

/Inumber of independent loci (chromosomes)

36 1

/IM parameters for the coalescence simulation program fsc252.exe

2 samples to simulate

/lpopulation effective sizes (humber of genes)

N_pop1

N_pop2

/[sampless sizes and samples age

n_pop1

n_pop2

/Igrowth rates: negative growth implies population expansion

0

0

/Inumber of migration matrices : 0 implies no migration between demes
2

/Imigration matrix O

0 MIG12

MIG21 0

/Imigration matrix 1

00

00

/Ihistorical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
1 historical event

TDIV101101
/Inumber of independent loci (chromosomes)
36 1

160



Supplementary Table 3.7 (continued)

/ISC parameters for the coalescence simulation program fsc252.exe

2 samples to simulate

/Ipopulation effective sizes (humber of genes)

N_pop1

N_pop2

/[sampless sizes and samples age

n_pop1

n_pop2

/Igrowth rates: negative growth implies population expansion
0

0

/Inumber of migration matrices : 0 implies no migration between demes
2

/Imigration matrix 0

0 MIG12

MIG21 0

/Imigration matrix 1

00

00

/Ihistorical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
3 historical events

TSCO0 1 ADM01101

TSC10ADM1010 1

TDIV0O11101
/Inumber of independent loci (chromosomes)
361

//SCbotnomig parameters for the coalescence simulation program fsc252.exe

2 samples to simulate

/lpopulation effective sizes (number of genes)

N_MT

N_MS

/lsampless sizes and samples age

15

11

/[growth rates: negative growth implies population expansion
0

0

/Inumber of migration matrices : 0 implies no migration between demes
2

/Imigration matrix 0

0 MIG12

MIG21 0

/Imigration matrix 1

00

00

/Ihistorical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
3 historical events

TSC000101

TBOTOOOFOUO 1

TDIVO11101

/Inumber of independent loci (chromosomes)

36 1

161



Supplementary Table 3.7 (continued)

//SCnomig parameters for the coalescence simulation program fsc252.exe

2 samples to simulate

/Ipopulation effective sizes (humber of genes)

N_pop1

N_pop2

/[sampless sizes and samples age

n_pop1

n_pop2

/Igrowth rates: negative growth implies population expansion
0

0

/Inumber of migration matrices : 0 implies no migration between demes
2

/Imigration matrix 0

0 MIG12

MIG21 0

/Imigration matrix 1

00

00

/Ihistorical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
2 historical events

TSC000101

TDIVO11101

/Inumber of independent loci (chromosomes)

36 1

/[Slbot parameters for the coalescence simulation program fsc252.exe

2 samples to simulate

/Ipopulation effective sizes (number of genes)

N_OW

N_MT or N_MS

/[sampless sizes and samples age

17

11 or 15, respectively

/[growth rates: negative growth implies population expansion

0

0

/Inumber of migration matrices: 0 implies no migration between demes
0

/Ihistorical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
2 historical events

TBOT110FOUO0O

TDIV101100
/Inumber of independent loci (chromosomes)
361

162



Supplementary Table 3.7 (continued)

/[SI parameters for the coalescence simulation program fsc252.exe

2 samples to simulate

/Ipopulation effective sizes (humber of genes)

N_OW

N_MT or N_MS

/[sampless sizes and samples age

17

11 or 15, respectively

/Igrowth rates: negative growth implies population expansion
0

0

/Inumber of migration matrices: 0 implies no migration between demes

0

/Ihistorical event: time, source, sink, migrants, new deme size, new growth rate, migration
matrix

1 historical event

TDIV101100

/Inumber of independent loci (chromosomes)

36 1

kkkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

*kkkkkkkkkhhhkhkkhkkkkkkkkkkkkkkhhkkhkhkkkkkkkkkkkkkkkkkkkk

\\number of contiguous locus blocks on chromosome 1
1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters

DNA 277951 0 1.99e-9 OUTEXP
\\number of contiguous locus blocks on chromosome 2
1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters

DNA 334113 0 1.99e-9 OUTEXP
\\number of contiguous locus blocks on chromosome 3
1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters

DNA 382367 0 1.99e-9 OUTEXP
\\number of contiguous locus blocks on chromosome 4
1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters

DNA 475338 0 1.99e-9 OUTEXP
\\number of contiguous locus blocks on chromosome 5
1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters

DNA 449024 0 1.99e-9 OUTEXP
\\number of contiguous locus blocks on chromosome 6
1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters

DNA 523352 0 1.99e-9 OUTEXP
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Supplementary Table 3.7 (continued)

\\number of contiguous locus blocks on chromosome 7

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 592382 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 8

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 495393 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 9

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 572115 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 10

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 547235 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 11

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 575792 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 12

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 568477 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 13

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 645761 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 14

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 639279 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 15

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 617636 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 16

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 698903 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 17

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 667340 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 18

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 720194 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 19

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 742501 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 20

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 732590 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 21

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 759899 0 1.99e-9 OUTEXP
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Supplementary Table 3.7 (continued)

\\number of contiguous locus blocks on chromosome 22

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 659512 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 23

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 774004 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 24

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 867075 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 25

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 886912 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 26

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 1050165 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 27

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 1043947 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 28

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 1163438 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 29

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 1221905 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 30

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 1365115 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 31

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 1468864 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 32

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 1547509 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 33

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 1448148 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 34

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 1668239 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 35

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 2068523 0 1.99e-9 OUTEXP

\\number of contiguous locus blocks on chromosome 36

1

\\Per block: number of loci, recombination rate to the right-side locus, plus optional parameters
DNA 2673956 0 1.99e-9 OUTEXP

165



Chapter 4
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4.1 Abstract

Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and
research. Powerful inference from pathogen genetic variation, however, is often restrained
by limited access to representative target DNA, especially in the study of obligate parasitic
species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence
capture methods enable pathogen genetic variation to be analyzed directly from vector/host
material but are often too complex and expensive for resource-poor settings where infectious
diseases prevail. This study proposes a simple, cost-effective ‘genome-wide locus sequence
typing’ (GLST) tool based on massive parallel amplification of information hotspots
throughout the target pathogen genome. The multiplexed polymerase chain reaction
amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and
subsequent agarose gel-based clean-up and barcoding completes library preparation at under
4 USD per sample. Approximately 100 libraries can be sequenced together in one Illumina
MiSeq run. Our study generates a flexible GLST primer panel design workflow for
Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-
target GLST panel to direct, culture-free metagenomic extracts from triatomine vectors
containing a minimum of 3.69 pg/ul T. cruzi DNA and further elaborate on method
performance by sequencing GLST libraries from 7. cruzi reference clones representing
discrete typing units (DTUs) Tcl, Tclll, TclV, and TcVI. The 780 SNP sites we identify in
the sample set repeatably distinguish parasites infecting sympatric vectors and detect
correlations between genetic and geographic distances at regional (< 150 km) as well as
continental scales. The markers also clearly separate DTUs. We discuss the advantages,

limitations and prospects of our method across a spectrum of epidemiological research.
4.2 Introduction

Genome-wide single nucleotide polymorphism (SNP) analysis is a powerful and
increasingly common approach in the study and surveillance of infectious disease.
Understanding patterns of SNP diversity within pathogen genomes and across pathogen
populations can resolve fundamental biological questions (e.g., reproductive mechanisms in
T. cruzi (Chapter 2)), reconstruct past**® and present transmission networks (e.g.,
Staphylococcus infections within hospitals)*” or identify the genetic bases of virulence*?%438
and resistance to drugs (see examples from Plasmodium spp.**°*?). A number of obstacles,
however, complicate access to representative, genome-wide SNP information using modern
sequencing tools. Micro-pathogens are often sampled in low quantities and together with

large amounts of host/vector tissue, microbiota, or environmental DNA. Sequencing is rarely

viable directly from the infection source and studies have often found it necessary to isolate
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and culture the target organism to higher densities before extracting DNA. These additional
steps, however, are resource-intensive and bias-prone. Pathogen isolation is less often
attempted on asymptomatic infections and is less likely to succeed when levels of
parasitaemia in a sample are low. Genomic sequencing data on the protozoan parasite
Leishmania infantum, for example, has for such reasons come to exhibit major selection bias
towards aggressive strains isolated by invasive sampling from canine hosts. A short look
into the limited number of whole-genome sequencing (WGS) datasets available for L.
infantum at the European Nucleotide Archive (ENA) quickly confirms this statement.
Vector-isolated genomes have yet to be reported from the Americas and only a single study
claims to have sequenced L. infantum from asymptomatic hosts?*’. Selection bias also often
occurs due to competition among isolated strains. Studies on the kinetoplastid Trypanosoma
cruzi, for example, are time and again confounded by growth and survival rate differences

102,491,492

among genotypes in culture , and gradual reductions to genetic diversity are often

observed over time!®. Karyotypic changes are also known to arise during 7. cruzi

micromanipulation and axenic growth!”84%,

A variety of approaches therefore aim to obtain genome-wide SNP information without first
performing pathogen isolation and culturing steps. Some studies separate target sequences
from total DNA or RNA by exploiting base modifications or transcriptional properties
specific to the pathogen®*®, vector*** or host*>*®. Others describe the use of biotinylated

hybridization probes®**4974%

or selective whole-genome amplification, e.g., based on the
strand displacement function of phi29 DNA polymerase®”’. Such techniques are costly and
often excessive when a study’s primary objective is to evaluate genetic distances and
diversity among samples rather than to reconstruct complete haplotypes or investigate
structural genetic traits. Epidemiological tracking and source attribution studies, for
example, often benefit little from measuring invariant sequence areas or defining the
complete architecture of sample genomes. Also pathogen typing or population assignment
objectives primarily require information on polymorphic sites. It is nevertheless quite
common to see such studies to undertake expensive WGS procedures only for final analyses

to take place ‘post-VCF*"! i.e., using a list of diagnostic markers compiled from a small

fraction of polymorphic reads.

Highly multiplexed polymerase chain reaction (PCR) amplicon sequencing offers a much
more efficient option when obtaining genome-wide SNP information is the primary goal.
First marketed under the name Ion AmpliSeq by Thermo Fisher Scientific>??, the method
consists in the simultaneous amplification of dozens to hundreds of DNA targets known or
hypothesized to contain sequence polymorphism in the sample set. Each sample’s resultant

amplicon pool is then prepared for sequencing by index/adaptor ligation or in a subsequent
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‘barcoding” PCR. Panel construction is highly flexible, requiring only that the primers
exhibit similar melting/annealing temperatures and a low propensity to cross-react. As such,
target selection can be tailored to specific research goals, for example, to profile resistance
markers®® or to genotype neutral SNP variation for landscape genetic techniques®*. The
potential to isolate and genotype pathogen DNA at high-resolution directly from uncultured
sample types by multiplexed amplicon sequencing has however received little attention thus
far. Simultaneous PCR-based detection of multiple pathogen species or genotypes is
certainly common>%, but multiplexable primer panels are rarely designed for subsequent
sequencing and polymorphism analysis. The Ion AmpliSeq brand currently offers pre-

505

designed panels for studies on ebola>*® and tuberculosis>*® but the use of custom panels for

507

other pathogen species (e.g., Bifidobacterium®®’ or human papilloma virus®®) remains

surprisingly rare in the literature.

In this study we describe the design and implementation of a large multiplexable primer
panel for 7. cruzi, parasitic agent of Chagas disease. In contrast to past multi-locus sequence
typing (MLST) methods involving at most 32 (individually amplified) gene fragments, our
‘genome-wide locus typing’ (GLST) tool simultaneously amplifies 203 sequence targets
across 33 (of 47) T. cruzi chromosomes. We apply GLST to metagenomic DNA extracts
from triatomine vectors collected in Colombia, Venezuela and Ecuador and further describe
method sensitivity/specificity by sequencing GLST libraries from 7. cruzi clones
representing discrete typing units (DTUs) Tcl, Tclll, TcIV, and TcVI. The 780 SNP sites
identified from GLST amplicon sequencing repeatably distinguish parasites infecting
sympatric vectors and detect correlations between genetic and geographic distances at
regional (< 150 km) and continental scales. The markers also clearly separate DTUs. We
discuss the advantages and limitations of our method for epidemiological studies in resource-

poor settings where Chagas and other ‘neglected tropical diseases’ prevail.
4.3 Methods
4.3.1 Triatomine samples and 7. cruzi reference clones

T. cruzi-infected intestinal tract and/or faeces samples of Rhodnius ecuadoriensis and
Panstrongylus chinai were collected by the Center for Research on Health in Latin America
(CISeAL) in Loja Province, Ecuador, following protocols described in Grijalva et al.
(2012)°”. DNeasy Blood and Tissue Kit (Qiagen) was used to extract metagenomic DNA.
Infected intestinal material of Panstrongylus geniculatus, R. pallescens and R. prolixus from
northern Colombia was also collected in previous projects>!®>? likewise using DNeasy
Blood and Tissue Kit to extract metagenomic DNA. Panstrongylus geniculatus specimens

from Caracas, Venezuela were collected by the citizen science triatomine collection program
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(http://www.chipo.chagas.ucv.ve/vista/index.php) at Universidad Central de Venezuela.
This program has supported various epidemiological studies in the capital district>'315,
DNA was extracted from the insect faeces by isopropanol precipitation. Geographic
coordinates and ecotypes (domestic, peri-domestic, or sylvatic) of the sequenced samples

are provided in Supplementary Tbl. 4.1.

T. cruzi epimastigote DNA from reference clones Chile c22 (Tcl) Armal8 cl. 1 (Tclll),
Saimiri3 cl. 8 (TclV), Para7 cl. 3 (TcVI), Chaco9 col. 15 (TcVI) and CL Brener (TcVI) was
obtained from the London School of Hygiene and Tropical Medicine (LSHTM). DNA
extractions at LSHTM followed Messenger et al. (2015)%,

Uninfected Rhodnius prolixus gut tissue samples used for mock infections (see ‘Method
development and library preparation’) were also provided by LSHTM. Special thanks to M.
Lewis and M. Yeo for supervising dissections. Insects were euthanized with CO, and
hindguts drawn into 5 volumes of RNAlater (Sigma-Aldrich) by pulling the abdominal apex

toward the posterior with sterile watchmaker’s forceps.

T. cruzi Tcl X10/1 Sylvio reference clone (‘Tcl-Sylvio’) epimastigotes used for mock
infections and various other stages of method development were obtained from the Center
for Research on Health in Latin America (CISeAL). Cryo-preserved cells were returned to
log-phase growth in liver infusion tryptose (LIT) and quantified by hemocytometer before
pelleting at 25,000 g. Pellets were washed twice in PBS and parasites killed by resuspension
in 10 volumes of RNAlater. DNA from these T cruzi cells (and their dilutions with preserved

T. prolixus intestinal tissue) was extracted by isopropanol precipitation.

Isopropanol precipitation was also used to extract DNA from 7. cruzi plate clone
TBM_2795 CL2. This sample was previously analyzed by WGS (see Chapter 2) and served
as a control for GLST method development in this study.

4.3.2 GLST target and primer selection

We began our GLST sequence target selection process by screening single-nucleotide
variants previously identified in 7. cruzi populations from southern Ecuador (Chapter 2).
Briefly, Chapter 2 sequenced genomic DNA from 45 cloned and 14 non-cloned 7. cruzi field
isolates on the Illumina HiSeq 2500 platform and mapped resultant 125 nt reads to the Tcl-
Sylvio reference assembly using default settings in BWA-mem v0.7.3°%. Single-nucleotide
polymorphisms (SNPs) were summarized by population-based genotype and likelihood
0389

assignment in Genome Analysis Toolkit v3.7

confidence (QUAL < 1,500) and/or aberrant read-depth (< 10 or > 100) as well as those

, excluding sites with low cumulative call

k3 90

belonging to clusters of three or more SNPs. A ‘virtual mappability’ mas was also
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applied to avoid SNP inference in areas of high sequence redundancy in the 7. cruzi genome.
Read-mapping and variant exclusion criteria were verified by subjecting TcI-Sylvio [llumina
reads from Franzen et al. (2012)*% to the same pipelines as the Ecuadorian dataset. An
additional mask was set around small insertion-deletions suggested to occur in these reads
based on the assumption that the reference sample should not present alternate genotypes in

high-quality contigs of the assembled genome.

We extracted 160 nt segments from the 7. cruzi reference genome (.fasta file) whose internal
sequence (positions 41 to 120) contained between one and ten of 75,038 SNPs identified in
the above WGS dataset. These 56,428 segments were further filtered for synteny between 7.
cruzi and Leishmania major genomes as defined by the OrthoMCL algorithm at
TriTrypDB>!¢. Such conserved segments may be least prone to repeat-driven nucleotide
diversity and as such most amenable to PCR3*. The 6,259 synteny segments found by
OrthoMCL therefore proceeded to primer search with the high-throughput primer design

engine BatchPrimer3°!’

. As target SNPs did not occur in the outer 40 nt of each synteny
segment, these flanking regions provided additional flexibility to identify primers matching

the following criteria:

- min. size =24 nt

- max. size =35 nt

- optimal size = 24 nt

- min. product size = 120 nt

- max. product size = 160 nt

- optimal product size = 120 nt

- min. melting temperature = 63 °C,

- max. melting temperature = 65 °C,

- optimal melting temperature = 63 °C,
- max. self-complementarity: 4 nt

- max. 3’ self-complementarity: 2 nt

- max. length of mononucleotide repeats = 3 nt
- min. GC content = 40%

- max. GC content = 60%

Each of 286 forward primer candidates output by BatchPrimer3 received the additional 5’
tag sequence 5’-ACACTGACGACATGGTTCTACA-3’ and reverse primer candidates
received the 5° tag sequence 5’-TACGGTAGCAGAGACTTGGTCT-3’. These tag
sequences enable single-end barcode and Illumina P5/P7 adaptor attachment in second-

round PCR. Next, we determined binding energies (AG) for all possible primer-pairs using
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the primer compatibility software MultiPLX v2.1.4. We discarded primers with inter-
quartile ranges crossing a threshold of AG = -12.0 kcal/mol. Primers with 20 or more
interactions showing AG < -12.0 kcal/mol were also disallowed. The remaining 248 primer-
pairs (median AG = -9.0) underwent a last filtering step by screening for perfect matches in
Chapter 2’s raw WGS sequence files (.fastq). Low match frequency led to the elimination
of 45 additional primer pairs. WGS alignments corresponding to the 203 sequence regions
targeted by this final primer set were visualized in Belvu v12.4.35!8, The 403 SNPs occurring
within these sequence regions distributed evenly across individuals in Loja Province. Using
the ‘nj’ function from the ‘ape’ package v5.0 in R v3.4.13% the 403 SNPs also reproduced
neighbor-joining relationships observed based on total polymorphism identified by WGS
(Supplementary Fig. 4.1). These observations lent further support to the suitability of the
GLST marker panel for the analysis of genetic differentiation at the landscape-scale. The

GLST sequence target selection process described above is summarized in Fig. 4.1.
4.3.3 Wet lab method development and library preparation

The 203 primers pairs designed above (Supplementary Tbl. 4.2) were purchased from
Eurofins Genomics (Ebersberg, Germany) at 200 uM concentration in salt-free, 96-well
plate format. Primer pairs were first tested individually to establish cycling conditions for
PCR (Supplementary Fig. 4.2). Optimal target amplification occurred with an initial
incubation step at 98 °C (2 min); 30 amplification cycles at 98 °C (10 s), 60 °C (30 s), and
72 °C (45 s); and a final extension step at 72 °C (2 min). The 10 pl reactions contained 5 pl
Q5 High-Fidelity Master Mix (New England Biolabs), 1 ul forward primer [10 uM], 1 pl
reverse primer [10 uM], and 3 pl Tcl-Sylvio epimastigote DNA. The multiplexed, first-
round ‘GLST’ PCR reaction was prepared by combining all 406 primers in equal proportions
and diluting the combined mix to 50.75 uM, resulting in individual primer concentrations of
50.75 uM / 406 = 125 nM. GLST reactions incorporated 2 pl of this primer mix rather than

two separate 1 ul forward/reverse primer inputs as above.

We first tested GLST PCR on DNA extracts from mock infections, each consisting of 104,
10° or 10% Tcl-Sylvio epimastigote cells and one uninfected R. prolixus intestinal tract
(Supplementary Fig. 4.3). Amplicons from lower concentration epimastigote dilutions gave
weaker signals in gel electrophoresis, suggesting lower infection load thresholds at which
vector gut DNA becomes unsuitable for GLST. Most vector gut DNA extracts obtained for
this study represented donated material of limited quality and infection load, some samples
were also without signal in PCR spot tests for the presence of high frequency ‘TcZ’3"

satellite DNA (commonly targeted to diagnose human 7. cruzi infections).
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Figure 4.1 GLST sequence target selection from preliminary genomic data. Nine steps of primer
panel construction and validation run clockwise from top left. Various methods and criteria can be
applied to complete many of these steps. Those specific to this study are asterisked, e.g., we used
BWA in step 1 and GATK in step 2. Abbreviations: SRA (Sequence Read Archive at
www.ncbi.nlm.nih.gov/sra); ENA (European Nucleotide Database at www.ebi.ac.uk/ena; WGS
(whole-genome sequencing); SNP (single-nucleotide polymorphism); MAF (minor allele frequency);
PCR (polymerase chain reaction); VCF (variant call format); NJ (neighbor-joining).
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We therefore first used qPCR to identify vector gut samples containing 7. cruzi DNA
quantities within ranges successfully visualized from GLST reactions on epimastigote DNA
quantified by Qubit fluorometry (Invitrogen) and serially diluted from 1.35 ng/ul to 2.50
pg/ul in dH>O (Supplementary Fig. 4.4). Each 20 pl qPCR reaction consisted of 10 ul
SensiMix SYBR Low-ROX reagent (Bioline), 1 pul TcZ forward primer
(5’-GCTCTTGCCCACAMGGGTGC-3’)’"" [10 pM], 1 ul TcZ reverse primer
(5°>-CCAAGCAGCGGATAGTTCAGG-3°)>"? [10 uM], 7 ul dH,0, and 1 pl vector gut
DNA. Samples were amplified together with a 15-step standard curve containing between
0.30 pg and 4.82 ng T. cruzi epimastigote DNA. Reaction conditions consisted of an initial
incubation step at 95 °C (10 min) and 40 amplification cycles at 95 °C (15 s), 55 °C (15 s),
and 72 °C (15 s). Fluorescence acquisition occurred at the end of each cycle and final product

dissociation was measured in 0.5 °C increments between 55 and 95 °C.

Vector gut samples suggested to contain at least 1.0 pg/ul 7. cruzi concentrations based on
gPCR proceeded to final library construction (Supplementary. Tbl. 4.1) alongside DNA from
T. cruzi clones TBM 2795 cl2 (Tcl), Chile c22 (Tcl) Armal8 cl. 1 (Tclll), Saimiri3 cl. 8
(TclV), Para7 cl. 3 (TcV), Chaco9 col. 15 (TcVI) and CL Brener (TcVI). Several samples
were processed in 2 — 4 replicates beginning with the first-round GLST PCR reaction step.
First-round PCR products were electrophoresed in 0.8% agarose gel to separate target bands
(mode =164 nt) from primer polymers quantified with the Agilent Bioanalyzer 2100 System
(see 78 nt primer peak in Supplementary Fig. 4.5). Excised target bands were resolubilized
with the PureLink Quick Gel Extraction Kit (Invitrogen) to create input for subsequent
barcoding PCR. This second PCR reaction consisted of an initial incubation step at 98 °C (2
min); 7 amplification cycles at 98 °C (30 s), 60 °C (30 s), and 72 °C (1 min); and a final
extension step at 72 °C (3 min). Only 7 amplification cycles were used given polymer ‘daisy-
chaining’ observed when cycling at 13 and 18x (Supplementary Fig. 4.6). The barcoding
reaction adds [llumina flow cell and sequencing primer binding sites to each first-round PCR
product. A different reverse primer is used for each sample. The reverse primer
(5’-CAAGCAGAAGACGGCATACGAGAT*X*TACGGTAGCAGAGACTTGGTCT-3’)
contains a 10 nt barcode (*X*) to distinguish reads from different samples during pooled
sequencing. It also contains CS2 (sequencing primer binding sites). A single forward primer
(5'-AATGATACGGCGACCACCGAGATCTACACTGACGACATGGTTCTA-3")

containing CS1 is used for all samples. Each 20 pl barcoding reaction contained 10 pl Q5
High-Fidelity Master Mix (New England Biolabs), 0.8 ul forward (universal) primer [10
uM], 0.8 ul (barcoded) reverse primer [10 uM], 5.4 ul dH>O and 3 pl (gel-purified) first-
round PCR product. Barcoding primers were purchased from Eurofins Genomics at 100 uM

concentration in HPLC-purified, 96-well plate format. Barcoded amplicons (e.g.,
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Supplementary Fig. 4.7) were quantified by Qubit fluorometry (Thermo Fisher Scientific),
and pooled at equimolar concentrations, gel-excised, re-solubilized, and verified by

microfluidic electrophoresis (Supplementary Fig. 4.8) as above.
4.3.4 GLST amplicon sequencing and variant discovery

The GLST pool was sequenced twice on an [llumina MiSeq instrument. We first used the
pool to ‘spike’ additional base diversity into a collaborator’s 16S amplicon sequencing run.
16S samples were loaded to achieve 80% sequence output whereas GLST and PhiX DNA>2
were each loaded at 10%. This first run occurred in 500-cycle format using MiSeq Reagent
Kit v2. The second run occurred in 300-cycle format using MiSeq Reagent Micro Kit v2 and
was dedicated solely to GLST (also no PhiX). Both runs were performed at Glasgow
Polyomics using Fluidigm Custom Access Array sequencing primers FLL1 (CS1 + CS2) and
CS2rc!,

Demultiplexed sequence reads were trimmed to 120 nt and mapped to the Tcl-Sylvio
reference assembly using default settings in BWA-mem v0.7.3. Mapped reads with poor
alignment scores (AS < 100) were discarded to decontaminate samples of non-T7.cruzi
sequences sharing barcodes with the GLST dataset. Identical results were achieved using
BWA-sw in DeconSeq v0.4.3°* to decontaminate reads. After merging alignment (.bam)

files from sequencing runs 1 and 2 with Picard Tools v1.11%%8

, single-nucleotide
polymorphisms (SNPs) were identified in each sample using the ‘HaplotypeCaller’
algorithm in GATK v3.7.0°*. Population-based genotype and likelihood assignment
followed using ‘GenotypeGVCFs’. We excluded SNP sites with QUAL < 80, D < 10,
Mapping Quality (MQ) < 80 and or Fisher Strand Bias (FS) > 10. Individual genotypes were
set to missing (./.) if they contained < 10 reads and set to reference (0/0) if they contained
only a single alternate read (i.e., if they were classified as heterozygotes based on minor
allele frequencies < 10%). These filtering thresholds were cleared by all expected SNPs (i.e.,
SNPs also found in prior WGS sequencing) but not by all new SNPs found using GLST
(e.g., see comparison of QUAL density curves in Supplementary Fig. 4.9). SNP calling with

GATK was also performed separately for sequencing runs 1 and 2 in order to exclude SNP

sites uncommon to both analyses from the merged dataset described above.
4.3.5 GLST repeatability, population genetic and spatial analyses

We used PopART v1.7 to plot genetic differences between samples and sample replicates as
a median-joining network, i.e., a minimum spanning tree composed of observed sequences

523

and unobserved (reconstructed) sequence nodes . Genetic differences were measured by

applying the ‘vcf-to-tab’ script from VCFtools v0.1.13 to the filtered SNP dataset,
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concatenating each sample’s output fields and counting the number of mismatching alleles
(0, 1 or 2) per site and sample pair. A phylogenetic tree was built by counting the number of

<

non-reference alleles in each genotype with the VCFtools function ‘--012°, summing

pairwise Euclidean distances at biallelic sites and plotting neighbor-joining relationships

with the ‘nj’ function from the ‘ape’ package v5.0 in R v3.4.1%4,

Considering only the first replicate of multiply sequenced samples, linkage and neutrality

3

statistics were calculated using VCFtools functions ‘--geno-r2’ (calculates correlation
coefficients between genotypes following Purcell et al.’>*), ‘--het’ (calculates inbreeding
coefficients using a method of moments>2°) and ‘--hwe’ (filters sites by deviation from
Hardy-Weinberg Equilibrium following Wigginton et al.’?). Fsr differentiation was

calculated using ARLSUMSTAT v3.5.2427,

Correlations between geographic and genetic differences were also calculated from non-
reference allele counts in R v3.4.13%*, The ‘mantel’ function from the ‘vegan’ package
v2.4.4%3 was used to test significance of the Mantel statistic by permuting geographic
distances and re-measuring correlations to genetic distances 999 times. Again, we used only
the first replicate for samples with replicate sets. DTU reference clones were also excluded
from analysis. Geographic distances were measured by projecting sample latitude/longitude
(WGS 84) coordinates into a common xy plane (EPSG code 3786) selected following Savrié
et al. (2016)°*® (Supplementary Tbl. 4.1). EPSG 3786 projection was also used to map
samples with the Natural Earth quick start kit in QGIS v2.18.4.

Given that missing information in sequence alignment can confound inference on genetic
distances between samples®?’, above repeatability and phylogenetic analyses excluded SNP
sites in which genotypes were missing for any individual, and mantel analyses excluded SNP
sites in which genotypes were missing in > 10% individuals. These exclusion criteria initially
led to significant information loss due to the presence of two outlier samples,
ARMA18 CL1 rep2 and COL253, libraries of which had been sequenced despite poor
target visibility in gel electrophoresis (i.e., final PCR product banding appeared similar to
that of ECU2 in Supplementary Fig. 4.7). Read-depths for the two samples ended up
averaging 1.2 interquartile ranges below the sample set median and precluded genotype

assignment at > 25% SNP sites. We therefore decided to exclude them from all analyses.
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4.4 Results
4.4.1 SNP polymorphism and repeatability

GLST amplicons contained a total of 780 SNP sites, 387 polymorphic among Tcl samples
and 393 private to non-Tcl reference clones (Fig. 4.2). Median read-depth was 266x across
all sites. Of 403 loci targeted from Chapter 2°s WGS dataset, 97% (391) were recovered by
GLST and 82 contained polymorphism outside of Ecuador. GLST recovered 80 of 87 SNPs
previously identified in TBM 2795 CL2 using WGS. Minimum parasite DNA
concentration successfully genotyped from metagenomic DNA was 3.69 pg/ul (sample

ECU36 — see Supplementary Fig. 4.10).
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Figure 4.2 Variant loci detected in T. cruzi | samples and reference clones of other sub-lineages.
The genome-wide distribution of SNP variants is shown relative to the Tcl-Sylvio reference assembly.
Each column represents one of 47 putative chromosomes. Pink diamonds comprise 393 variants
that occur only in non-Tcl samples. The remaining 387 variants are private to (blue) or shared by Tcl
and other sub-lineages (black). Diamonds representing nearby SNPs (e.g., those occurring on the
same GLST target segment) overlap at this scale.

The TBM 2795 CL2 control sample underwent GLST in four replicates. These replicates
were identical at all 561 SNP sites for which genotypes were called in all samples of the
dataset. Median number of allelic differences (AD =0, 1 or 2 per site) at non-missing sites
between other replicate pairs was 3 (Tbl. 4.1). Pairwise AD did not correlate to minimum,

maximum or difference in mean read-depth between the two replicates.
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Read-mapping coverage was inconsistent among replicates but strongly correlated between
sequencing runs (Pearson's r = 0.93, p < 0.001) (Supplementary Figs. 11 — 12). Variant
calling was also highly consistent: prior to variant filtration, only 10 SNP sites were called
from runl that were not also called from run 2 (these were excluded from analysis — see

Methods).
4.4.2 Differentiation among 7. cruzi individuals, sampling areas and sub-lineages

Sampling sites in Colombia, Venezuela and Ecuador are plotted in Fig. 4.3, and a median-
joining network of allelic differences among GLST genotypes is shown in Fig. 4.4. GLST
clearly distinguished Tcl individuals at common collection sites in Soata (COL466 vs.
COL468, AD =37), Paz de Ariporo (COL133 vs. COL135, AD =33), Tamara (COL154 vs.
COL155 AD =107) and Lebrija (COL77 vs. COL78, AD = 43) municipalities of Colombia
but not in the community of Bramaderos (ECU3 vs. ECUS vs. ECU10, AD = 0) in Loja
Province, Ecuador. Samples from nearby sites within Caracas, Venezuela were also clearly

distinguished by GLST (e.g., VZ16816 vs. VZ17114, AD = 43).

a 200 km
Venezuela
corr g
b b @covL31e
e coL133 b
coL135
cor154 @ corzsa Caracas, Venezuela
98" coLtee ® vz13516
vZ10168
® vz1214p ®
/ o
Colombia Vz35814 VZ6616
0
VZiT14
)
VZ16816
4.35km
Cc Loja Province, Ecuador
ECU3
ECU4
ECUB
ECUS
Ecuador i

ECU41 TBM_2795_CL2
ISJ/ ECU3 @) ecurr

19.10 km

Figure 4.3 Map of vector sampling sites. a Sampling in Colombia involved a larger spatial area than
that in Venezuela and Ecuador. T. cruzi-infected intestinal material was collected from Panstrongylus
and Rhodnius vectors in Arauca, Casanare, Santander and Boyaca. We asterisk COL253 because
low read-depth led to sample exclusion. b P. geniculatus material from Venezuela was collected
within the Metropolitan District of Caracas. ¢ R. ecuadoriensis and P. chinai material from Ecuador
was collected in Loja Province. Supplementary Tbl. 4.1 lists coordinates and other details.
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Nucleotide diversity (1 = mean pairwise AD) was higher in samples from Caracas (w = 29.0)
than in those from Loja Province (r = 22.8) but not in those from Colombia (w =43.2) (Tbl.
4.2). Hardy-Weinberg ratios, linkage and inbreeding coefficients are also listed in Tbl. 4.2.
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Figure 4.4 Allelic differences among T. cruzi | samples and reference clones of other sub-lineages
as a median-joining network. A single SNP locus can differ by 0, 1 or 2 between two individuals (i.e.,
the individuals match at both, one, or neither allele). The AD measurement indicated on each edge
of the network represents the total number of differences across all loci for which genotypes were
called in all individuals of the dataset (n = 561). Red edges indicate differences of 30 and above.
Technical replicates are represented by circles of the same fill color. Larger circles represent the
occurrence of identical GLST genotypes. Edge length is not directly proportional to AD.
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Table 4.1 Allelic differences between GLST replicates. Eighteen samples were processed in 2 — 4
replicates after DNA extraction. A single SNP locus can differ by 0, 1 or 2 between two replicates
(i.e., replicates can match at both, one, or neither allele). The AD measurement represents the total
number of pairwise differences across all loci for which genotypes are called in all individuals (n =
561). The discrepancy between VZ35814 replicates likely represents barcode contamination with
VZ16816 (see close similarity in Fig. 4.3).

Replicate comparison

COL319_rep1 vs. COL319_rep2
ECU10_rep1 vs. ECU10_rep2

TBM_2795_CL2_rep1 vs. TBM_2795_CL2_rep2
TBM_2795_CL2_rep1 vs. TBM_2795_CL2_rep3
TBM_2795 CL2 rep1vs. TBM_2795 CL2_ rep4
TBM_2795_CL2_rep2 vs. TBM_2795_CL2_rep3
TBM_2795_CL2_rep2 vs. TBM_2795_CL2_rep4
TBM_2795 CL2 rep3vs. TBM_2795 CL2_ rep4

VVZ13516_rep1 vs. VZ13516_rep2

COL154 _rep1 vs. COL154_rep2
COL466_rep1 vs. COL466_rep2

ECU3_rep1 vs. ECU3_rep2
COL135_rep1 vs. COL135_rep2
COL468 rep1 vs. COL468_rep2

ECU4_rep1 vs. ECU4_rep2
COL155_rep1 vs. COL155_rep2
COL466 _rep1 vs. COL466 rep3
COL468 rep1 vs. COL468 rep3
COL468_rep2 vs. COL468_rep3
VZ6616_rep1 vs. VZ6616_rep2
COL466 _rep2 vs. COL466 _rep3

VZ1016B_rep1 vs. VZ1016B_rep2
CL_Brener_rep1 vs. CL_Brener_rep2

COL133 rep1 vs. COL133 _rep2
ECU9_rep1 vs. ECU9_rep2
COL78_rep1 vs. COL78_rep2

VVZ35814 rep1 vs. VZ35814 rep2

AD

N o © N A A WWWWWNNN-=2 22000000 0 0 o
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o

Table 4.2 Basic diversity statistics for T. cruzi | samples from Colombia (COL), Venezuela (VZ) and
Ecuador (ECU). Abbreviations: n (sample size); PS (polymorphic sites); HWE (Hardy-Weinberg
equilibrium); Fis (inbreeding coefficient), r? (linkage coefficient), T (nucleotide diversity), Q (quartile);
M (median); Fst (between-group fixation index).

Group (n)
COL (11)
VZ (7)
ECU (9)

PS

175
147
148

PS in
HWE
169

143
142

Fis (Q1, M, Q3)

-0.19,0.13, 0.24 0.03,0.07,0.19 432
-0.35, -0.19, 0.11 0.02,0.09,0.27 29.0
-0.20,-0.09,0.18  0.04,0.17,0.36 22.8

r2(Q1, M, Q3) 1

Fst
to COL

0.000
0.136
0.595

Fst
tovz

0.136
0.000
0.632

Fst
to ECU

0.595
0.632
0.000
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Genetic distances increased with spatial distances among samples (Mantel’s r = 0.89, p =
0.001), but the correlation coefficient was largely driven by high Fsr between sample sets
from Colombia/Venezuela and Ecuador (Tbl. 4.2 and Fig. 4.5a): Mantel’s r decreased to
0.30 (p =0.001) after restricting analysis to sample pairs separated by <250 km (Fig. 4.5b).
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Figure 4.5 Isolation-by-distance among T. cruzi | samples. a Each circle represents geographic and
genetic distances between two Tcl samples. Global IBD is significant (Mantel's r = 0.89, p = 0.001)
but driven by divergence between Ecuadorian samples and the rest of dataset (see two clusters at
top right). b Nevertheless, IBD remains significant for within-country comparisons at < 250 km
(Mantel's r = 0.30, p = 0.009) and < 150 km (Mantel's r = 0.48, p = 0.002). Green, cyan and yellow
fill colors represent comparisons within Colombia, Ecuador and Venezuela, respectively. Each of the
above Mantel tests remains significant when sample pairs with genetic distances < 2 are removed
(see arrows). Only variant sites with < 10% missing genotypes (n = 285) are used in analysis. Only
the first replicate is used for samples represented by multiple replicates.
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Within-country isolation by distance (IBD)**° appeared to grow stronger for samples
separated by < 150 km (Mantel’s r = 0.48, p = 0.002) given a lack of correlation observed at
higher distance classes within the Colombian dataset (Fig. 4.5b).

Finally, GLST also clearly separated sub-lineages Tcl, Tclll, TcIV, and TcVI in network
(Fig. 4.3) and neighbor-joining tree construction (Fig. 4.6). AD between reference clones of
different sub-lineages ranged from 153 (Armal8 cll (TcIV) vs. Para7 cl.3 (TcV)) to 472
(Chile c22 (TcI) vs. Saimiri3 cl. 8 (TclV)).
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Figure 4.6 Neighbor-joining relationships among T. cruzi | samples and reference clones of other
sub-lineages. Genetic distances are based on 556 biallelic SNP sites for which genotypes are called
in all individuals. Results indicate high repeatability among most technical replicates (see ‘rep1 — 4’
suffices) and clearly separate Tcl, Tclll, TclV and TcVI. The tree also contains TBM_2795_CL2_wgs
(see asterisk). This control sample was genotyped at the same 556 GLST loci using whole-genome
sequencing (lllumina HiSeq) data from Chapter 2.
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4.5 Discussion
4.5.1 Principle results

The GLST primer panel design and amplicon sequencing workflow outlined in this study
aimed to profile 7. cruzi genotypes at high resolution directly from infected triatomine
intestinal content by simultaneous amplification of 203 genetic target regions that display
sequence polymorphism in publicly available WGS reads. Mapped GLST amplicon
sequences generated from 7. cruzi reference clones and from metagenomic intestinal DNA
extracts containing a minimum of 3.69 pg/ul T. cruzi DNA achieved high target specificity
(< 1% off-target mapping) and yield (391 of 403 target SNP sites mapped). Mapping depth
variation across target loci was highly repeatable between sequencing runs. 387 SNP sites
were identified among 7. cruzi DTU I samples and 393 SNP sites were identified in non-Tcl
reference clones. These markers showed low linkage and clearly separated 7. cruzi
individuals within and across DTUs, for the most part also individuals collected at the same
or closely separated localities in Colombia, Venezuela, and Ecuador. An increase in pairwise
genetic differentiation was observed with increasing geographic distance in analyses within

and beyond 150 km.
4.5.2 Cost-effective spatio-genetic analysis

GLST achieved an important resolution benchmark in recovering IBD at less than 150 km.
These correlations indicate the potential of GLST in spatially explicit epidemiological
studies which, for example, aim to identify environmental variables or landscape features
that modify IBD*. High spatial sampling effort is typically required by such studies and
often limits budget for genotyping tools. GLST appears promising in this context as library
preparation costs <4.00 USD per sample (see cost summary in Supplementary Tbl. 4.3) and
can be completed comfortably in two days. The first-round PCR reaction requires very low
primer concentrations (0.125 pM) such that a single GLST panel purchase (0.01 pmol
production scale) enables > 100,000 reactions and can be shared by several research groups.
Sequencing represents a substantial cost but is highly efficient due to short fragment sizes
and few off-target reads. High library complexity also promotes the use of GLST in the role
of PhiX, i.e., as a spike-in to enhance read quality in a different sequencing run. Our study
easily decontaminated reads from a spiked amplicon pool sharing barcodes with GLST (run
1). Alternatively, i.e, when GLST is sequenced alone (run 2), one Illumina MiSeq run is
expected to generate > 70x median genotype depth for 100 samples using Reagent Micro

Kit v2 (ca. 1,000 — 1,500 USD, depending on provider; Supplementary Tbl. 4.3).

183



4.5.3 GLST in relation to multi-locus microsatellite typing

We consider multi-locus microsatellite typing (MLMT) as the primary alternative for high-
resolution 7. cruzi genotyping directly from metagenomic DNA. MLMT has revolutionized
theory on 7. cruzi ecology and microevolution, for example, on the role of disparate

139.140 " ecological host-fitting!*’ and ‘cryptic sexuality’!# in shaping

transmission cycles
population genetic structure in Tcl. In some cases'?>>!>! (but others not'®147:149) " the
hypervariable, multiallelic nature of microsatellites allows every sample in a dataset to be
distinguished with a different multi-locus genotype (MLG). This depends on panel size and
spatial scale but also on local reproductive modes — e.g., sampling from clonal sylvatic vs.
non-clonal domestic transmission cycles has correlated with the presence or absence of
repeated MLGs'*. In this study, we found two identical GLST genotypes shared among five
samples from southern Ecuador. All other samples appeared unique, including those from
Venezuela, where triatomine collection occurred at seven domestic localities within the city
of Caracas. The small subset of repeated genotypes found in this study may reflect patchy,
transmission cycle-dependent clonal/sexual population structure in southern Ecuador (see
Chapter 2 and Ocafia-Mayorga et al. (2010)'*°) but may also represent a weakness in GLST
compared to MLMT in tracking individual parasite strains. The use of large MLMT panels,
however, is significantly more resource-intensive because each microsatellite marker
requires a separate PCR reaction and capillary electrophoresis cannot be highly multiplexed.
MLMT data are poorly archivable across studies and may also be less suitable for inter-
lineage phylogenetic analyses due to unclear mutational models and artefactual similarity
from saturation effects®!. Although our GLST panel was designed for Tcl, its focus on
syntenous sequence regions enabled efficient co-amplification of non-Tcl DNA. GLST
clearly separated Tcl samples from all non-Tcl reference clones, with highest divergence
observed in Saimiri3 cl. 8. Interestingly, large MLMT panels have shown comparatively
little differentiation between this sample and Tcl, also more generally suggesting that TcIV

and Tcl represent monophyletic sister clades>!.
4.5.4 Adjustment and transferability

Considering the great variety of sample types to which studies have successfully applied
PCR>¥33¢ we expect that GLST can be applied to metagenomic DNA from many
host/vector tissue types, not only from triatomine intestine as shown here. Further tests are
required to determine whether low 7. cruzi DNA concentrations in chronic infections or
sparsely infected organs (e.g., liver and heart™’) are also amenable to GLST. We focused
analysis on 7. cruzi DNA concentrations of at least one picogram per microliter

metagenomic DNA (this equates to ca. 30 parasites per microliter in the case of TcI>*®)
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without heavily investigating options to enhance sensitivity or sensitivity measurement, for
example, by additional removal of PCR inhibitors, improved primer purification (e.g., HPLC
vs. salt-free), post-PCR probe-hybridization®* or barcoding/sequencing of samples with
unclear first-round PCR amplicon bands. Even relatively aggressive processing methods
may be tolerable given that DNA fragmentation is unlikely to compromise the 120 — 160 nt
size range targeted by GLST. Increasing sensitivity by increasing PCR amplification cycles,
however, is less advised. PCR error appeared relevant with as little as 30x (+ 7x barcoding)
amplification in this study as we observed noise among replicates despite high read-depth
and SNP-call overlap between sequencing runs. Rates or error were, however, well within
margins expected for methods involving PCR>°. We also note that the exceptional
discrepancy between VZ35814 replicates unlikely represents systematic error but barcode
contamination with VZ16816. Such error is perhaps less likely if primers are kept in separate

vials instead of in the plate format which we have used here.

Wet lab aside, the main objective of this study was to provide a transparent bioinformatic
workflow for highly multiplexable primer panel design using freely available softwares and
publicly archived WGS reads (e.g., see www.ebi.ac.uk/ena or www.ncbi.nlm.nih.gov/sra).
Importantly, we show that knowledge of polymorphic genetic regions in parasite genomes
from one small study area (Loja Province, Ecuador) can suffice to guide variant discovery
at distant, unassociated sampling sites. Our demonstration using 7. cruzi should be easily
transferable to any other pathogenic species with a published reference genome. Target
selection can also be tailored to a variety of objectives. For example, while landscape genetic
studies on dispersal often focus on neutral or non-coding sequence variation>*!, experimental
(e.g., drug testing) studies may seek to detect single-nucleotide changes in coding regions,
perhaps in genes belonging to specific ontology groups or associated with results of high-
throughput proteomic screens>*?. The candidate SNP pool can easily be filtered for such
criteria during GLST panel design, e.g., using SnpEff**! or BEDTools** and data mining
strategies at EuPathDB>*. Candidate SNP filtering by minor allele frequency (MAF) may
also be useful when the target population is closely related to that of the WGS dataset guiding

396

panel design. Placing a minimum threshold on MAF (using VCFtools’™®, etc.), for example,

may improve analyses of population structure and genealogy whereas a focus on low-
frequency variants may help in tracking individuals or recent gene flow at the landscape
scale®®. It may also be possible to refine panel design towards markers that meet model
assumptions in later analysis. Hardy Weinberg Equilibrium (HWE), for example, is a

315,326,546
b

common requirement in demographic modelling Bayesian clustering®*,

547,548

admixture/migration and hybridization tests’*°. Deviation from HWE may occur more

frequently in specific genetic regions (e.g., near centromeres>°), and SNPs in these could be
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excluded from the target pool. Numerous other filtering options — e.g., based on allele count
(to enhance resolution per SNP), distance to insertion-deletions (to improve target
alignment), or percent missing information (to avoid poorly mapping regions) — are easily

implemented with common analysis tools>>!.

GLST is also highly scalable because increasing panel size does not lead to more laboratory
effort or processing time. Sequencing depth requirements and thermodynamic
compatibilities among primers are more relevant in limiting panel size. However, it is also
possible to divide large GLST panels into two or more PCR multiplexes based on AG-based
partitioning in MultiPLX>*2, Unintended primer affinities (i.e., polymer formations) can also
be removed by gel excision, e.g., as we have done using the PureLink Quick Gel Extraction

Kit.
4.5.5 Prospects

This study sought to provide a framework for various epidemiological research but was
restricted in its own ability to make important inferences on 7. cruzi ecology because only
few samples (remainders from different projects) were analyzed. Samples were also
aggregated either to domestic or to sylvatic ecotopes (see Supplementary Tbl. 4.1). More
extensive, purposeful sampling could have, for example, helped us explore whether
COLA468’s position deep within the Cordillera Oriental contributes to its strong divergence
to samples such as COL135 or COL319, these perhaps more closely related due to lower
‘cost-distances’ (as opposed to geographical distances — see Chapter 5’s glossary of

landscape genetic terms (Box 5.3))>3

along the basin range. Fuelling landscape genetic
simulators such as CDMetaPOP*?® with high GLST sample sizes is an especially exciting
direction for future research. It would also be interesting, for example, to extend this study’s
sampling to cover gradients along the perimeter of Caracas and adjacent El Avila National
Park (see Fig. 4.4b). Sylvatic P. geniculatus vector populations appear to be rapidly adapting
to habitats within Caracas®'>>°* but parallel changes in the distribution of 7. cruzi genetic
diversity have yet to be tracked. The low cost of GLST also makes it more feasible for studies
to simultaneously assess genetic polymorphism in each vector individual from which
parasite markers were amplified. Such coupled genotyping would enhance resolution of
parasite-vector genetic co-structure and thus, for example, help quantify rates of parasite
transmission from domiciliating vectors or determine whether parasite gene flow proxies for
(or improves understanding of) dispersal patterns in more slowly evolving vectors or hosts.
It would also be interesting to test in how far deep-sequenced GLST libraries could help in
detecting (and reconstructing distinct MLGs from) multiclonal 7. cruzi infections without

312

the use of cloning tools”', e.g., using bioinformatic strategies developed for malaria
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research®'#3335%7  Multiclonality has important implications for public health®*3%° but its

3115313 i difficult to describe from cultured

potential prevalence in 7. cruzi vectors and hosts
cells®!!*8¢ Countless other applications are conceivable for GLST. Some research fields,
however, will surely be less amenable to the PCR-based approach. Relative amplicon
concentrations, for example, appeared to be too stochastic in this study to allow inference of
copy number variation or other structural rearrangements based on read-mapping depths.
Unintended primer alignment is also likely to occur if PCR targets are located within highly

repetitive sequences such as those encoding surface protein families in sub-telomeric regions

of the T cruzi genome>®.

We look forward to seeing GLST approaches in a wide variety of research for which such
limitations do not apply. Regarding population and landscape genetic studies, prudent spatial
and genetic sampling design is often key to meaningful inference and we hope that the low

cost and high flexibility of our pipeline helps researchers achieve all criteria required.
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4.6 Supplementary figures and tables
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Supplementary Figure 4.1 Phylogenetic resolution at GLST loci in silico. The green tree shows
neighbor-joining (NJ) relationships calculated from 106,007 SNP sites identified from whole-genome
sequencing (WGS) of 45 Tcl clones in southern Ecuador (Chapter 2). Sites missing genotypes in =
10% individuals are excluded. Less than 45 km separate the most distant sampling sites within the
study region. Several pairs of clones also represent the same host/vector individual (see first seven
characters of IDs). NJ was repeated after abridging the WGS dataset to contain only SNPs within
the 203 sequence targets proposed by GLST (also excluding sites missing = 10% genotypes). This
resultant tree (blue, at right) uses 391 SNP sites and recreates clusters A-K observed in WGS.

L \—'—INTC

Primer pairs applied individually to
3 ul DNA stock derived from
~108 Tcl epimastigotes

Supplementary Figure 4.2 Individual primer pair validation. Primer pairs were first applied
individually to pure Tcl epimastigote DNA to confirm product amplification within the expected size
range (164 — 204 bp). The figure shows the electrophoresed products of 17 different primer pairs in
0.8% agarose gel as well as DNA ladder (L) and no-template control (NTC). All other primer pairs
achieved similar results using an initial incubation step at 98 °C (2 min); 30 amplification cycles at 98
°C (10 s), 60 °C (30 s), and 72 °C (45 s); and a final extension step at 72 °C (2 min).
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Supplementary Figure 4.3 Preliminary GLST (multiplex) trials on T. cruzi | mock infections. We
created mock infections by mixing 104, 10° and 108 RNAlater-preserved Tcl-Sylvio epimastigote (epi)
cells with uninfected Rhodnius prolixus vector gut (UVG). DNA extracted from these mock infections
was subjected to the multiplexed, 203-target GLST reaction (using the same cycling conditions as
for single-target reactions — see Methods or Supplementary Fig. 4.2 legend) and products were
electrophoresed in 0.8% agarose gel. Fainter banding of GLST products from lower concentration
mock infections encouraged follow-up on sensitivity thresholds using additional dilution curves and
gPCR. Next to DNA ladder (L) and no-template control (NTC), the gel also contains TcZ primer
product from pure Tcl epimastigote DNA. TcZ primers provide a highly sensitive positive control (PC)
as they target 195 bp satellite DNA repeats that make up ca. 5% of the T. cruzi genome.

epis epis epis epis epis epis epis epis epis epis L— I NTC L

infected vector
gut samples

Supplementary Figure 4.4 T. cruzi | DNA dilutions and GLST product visibility in 0.8% agarose gel.
The left side shows electrophoresed GLST amplicons generated from 3 ul pure Tcl epimastigote
(epi) DNA with concentrations between 1.35 ng/ul and 2.50 pg/ul (see cycling conditions in Methods
or Supplementary Fig. 4.2 legend). Lanes on the right contain amplicons from seven random
metagenomic samples that tested positive for T. cruzi satellite DNA (not shown). DNA ladders (L)
and no-template control (NTC) are indicated left and right. Poor amplicon visibility occurs at < 60 pg
epimastigote DNA input. Gut DNA amplicon visibility is also limited but whether this relates to low T.
cruzi content or amplification interference is unclear without gPCR.
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Supplementary Figure 4.5 First-round (unbarcoded) PCR product size composition measurement
using microfluidic electrophoresis. The figure plots fragment sizes (calculated based on migration
times relative to those of standards) and fluorescence intensity (FU) of first-round PCR products (see
cycling conditions in Methods or Supplementary Fig. 4.2 legend) measured with the Agilent
Bioanalyzer 2100 System. The first peak represents primer polymerization that is removed in
subsequent gel excision/re-solubilization steps. The second peak matches expectations for the multi-
target GLST product (164 — 204 bp). Special thanks to Craig Lapsley at the Wellcome Centre for
Molecular Parasitology in Glasgow for generating this data.
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Supplementary Figure 4.6 Large polymer formation from excessive amplicon barcoding. The
second (barcoding) PCR reaction uses an initial incubation step at 98 °C (2 min); 7 amplification
cycles at 98 °C (30 s), 60 °C (30 s), and 72 °C (1 min); and a final extension step at 72 °C (3 min).
Seven amplification cycles were chosen because unwanted polymers formed at 13 and 18x. The
center lanes in the 0.8% agarose gel at left (red border) show electrophoresed GLST products from
reference clones after eighteen cycles of barcoding PCR. Large, non-target banding occurs at = 300
bp. Unbarcoded products from Tcl epimastigote (epi) DNA are also shown at left. No template
controls from barcoding (NTC) and first-round + barcoding PCR (NTC*) occur next to the DNA ladder
(L) on the right side of the gel. The smaller image (green border) to the right shows how unwanted
banding becomes less pronounced at 13x and largely disappears at 7x. This 0.8% agarose gel also
contains NTC* samples, i.e., negative controls carried through both first and second-round PCR.
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Supplementary Figure 4.7 Barcoded GLST products ready for final pooling and purification. The
0.8% agarose gel shows a subset of fifteen GLST products from the second-round (barcoding) PCR
reaction (see cycling conditions in Methods or Supplementary Fig. 4.6 legend) prior to equimolar
pooling and final gel excision/re-solubilization steps. Products from ECU6 and ECU2 occur in this
gel but were not included in the final pool. The gel also contains DNA ladder (L) and no-template

controls from barcoding (NTC) and first-round + barcoding PCR (NTC*).
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Supplementary Figure 4.8 Final (barcoded) GLST pool size composition measurement using
microfluidic electrophoresis. The figure plots fragment sizes (calculated based on migration times
relative to those of standards) and fluorescence intensity (FU) of the final GLST pool measured with
the Agilent Bioanalyzer 2100 System. The large peak matches expectations for the multi-target GLST
product pool (224 — 264 bp). Left and right peaks labelled in green and purple represent standards
of known size. A small non-target peak remaining near 151 bp encourages improvement of prior size

selection steps. Special thanks to Julie Galbraith at Glasgow Polyomics for generating this data.
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Supplementary Figure 4.9 Quality scores at previously identified vs. unidentified variant sites. The
GLST primer panel was designed based on single-nucleotide polymorphisms (SNPs) in Ecuadorian
Tcl clones. It was applied, however, to samples from distant geographic locations as well as to non-
Tcl clones. Additional, previously unidentified SNP sites (PU) were thus expected to be found but we
needed to distinguish true PU from PCR and sequencing error. We reasoned that quality statistics
(e.g., mapping quality, strand bias, minor allele frequency, etc. — see Methods) at previously identified
SNP sites (PI) could help calibrate quality filters applied to the wider dataset. This strategy finds
support in the above density plot of QUAL scores computed by Genome Analysis Toolkit38°. The plot
suggests that, prior to variant filtration, lower QUAL scores occur more often at PU (red) than at PI
(black). We thus imposed the most stringent filtering criteria possible without losing PI.
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Supplementary Figure 4.10 Real-time PCR for GLST sample selection and sensitivity estimation.
We used T. cruzi satellite DNA gPCR to identify vector gut samples with T. cruzi DNA quantities
within ranges successfully visualized in GLST reactions using epimastigote DNA (Supplementary
Fig. 4.4). The gPCR reaction used an initial incubation step at 95 °C (10 min) and 40 amplification
cyclesat95°C (155s),55°C (15s),and 72 °C (15 s). The plot shows baseline-corrected fluorescence
(dR) for seven sample duplicates. Following the regression equation from the standard curve (see
inset), the three samples with highest cycle thresholds (Ct values) in this example represent gut
extracts with 0.05 to 0.14 ng/ul T. cruzi DNA. Such samples with T. cruzi DNA concentrations above
0.01 ng/ul were prioritized for GLST and none failed in library construction. ECU36, showing a mean
Ct value of 18.68 in the plot, was also successfully sequenced. A Ct value of 18.68 represents 3.69
pa/ul T. cruzi DNA. Not all samples with concentrations at single-digit picogram levels (per ul) were
successful and we did not troubleshoot those with substantially lower concentrations in qPCR.
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Supplementary Figure 4.11 Target coverage in control replicates confirms expectations that the GLST panel applied in this study is unreliable for copy number
estimation. We adapted methods from Chapters 2 and 3 to derive somy estimates for each base position within GLST amplicons. Briefly, we calculated median-read-
depth of all target bases for each chromosome. We let the median of these chromosomal medians (the ‘inter-chromosomal median’) represent expectations for the
disomic state, estimating copy number per base position by dividing each position’s read-depth by the inter-chromosomal median and multiplying by two. Boxplots show
median and interquartile ranges of these site-wise somy estimates for each chromosome in TBM_2975 CL2 control replicates. TBM_2795 CL2 did not show
chromosomal amplifications in whole-genome analysis (see Chapter 2). Not unexpectedly for a PCR-based method, somy values estimated from GLST read-depths
differ substantially among replicates and are unrealistically high/low on many chromosomes. Estimates on chromosomes with few GLST targets appear especially
unreliable — e.g., see chromosomes 8, 28, 33, 39 and 43. These chromosomes contain < 2 GLST targets each. The horizontal lines cyan lines marky =1.5andy = 2.5.
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Supplementary Figure 4.12 Similar read-depth distribution between separate sequencing runs. We
sequenced the same GLST pool in two separate lllumina MiSeq runs. Run 1 involved GLST as a
spike to a collaborator's 16S amplicon library, whereby GLST reads were subsequently
decontaminated from (barcode-sharing) 16S reads by alignment to the Tcl-Sylvio reference genome.
Run 2 was dedicated solely to GLST, i.e., no non-GLST libraries were simultaneously sequenced on
the flow cell. The plot shows that run 1 and run 2 read-depths at each GLST base position (purple
points) are highly correlated (Pearson's r = 0.93, p < 0.001), and that run 1 had higher sequencing
output than run 2. Read-depth values are square-root transformed and represent control sample
TBM_2975 CL2 rep1.
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5.1 Abstract

Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic
species. Understanding and predicting how such features are governed by the ecological
variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data
can further inform functional connectivity among parasite, host and vector populations in a
landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes
among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as
well as invasion and re-invasion risk where parasite transmission is absent due to current or
past intervention measures. However, the formal integration of spatial and genetic data
(‘landscape genetics’) is scarcely ever applied to parasites. Here, we discuss the specific
challenges and practical prospects for the use of landscape genetics and genomics to
understand the biology and control of parasitic disease and present a practical framework for

doing so.
5.2 Introduction
5.2.1 Parasites, genes, and landscapes

Individual parasite species around the world are distributed across different ecological
settings, spanning rural, peri-urban and urban areas. For widely distributed parasitic diseases,
‘patchy’ geographic distribution of cases frequently occurs, where parasite, vector and host-

related factors conspire to promote intense local transmission>®

. Understanding how abiotic
and biotic environment features affect the movement of parasites, their hosts and vector

species, is critical for disease control.

Spatial or landscape epidemiologists aim to exploit prior knowledge about environmental
heterogeneity, often to the level of communities and households, to map current parasite
distributions and develop models to predict future disease incidence (e.g., Vazquez-
Prokopec et al. (2012)°®!). In addition to using spatial information to predict the presence
and abundance of parasitic agents, it is also vital to establish the extent to which
environmental features impact genetic connectivity between individuals and populations.
The spatial distribution of genetic diversity directs the co-evolutionary outcome of host-
vector-parasite interactions when selection is spatially heterogeneous>®?. Gene flow modifies
this genetic distribution and therefore not only correlates to the spread of epidemiologically
relevant traits (e.g., drug resistance®®* or virulence®®”) but also regulates local adaptation, the
emergence of novel phenotypes and their invasion of areas free of parasite transmission (e.g.,
Fitzpatrick et al. (2008)°*%), including those subjected to past or current intervention

measures. However, while models of parasitic disease spread are becoming spatially explicit
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(e.g., Vazquez-Prokopec et al. (2012)°"), these still rarely incorporate genetic data. Studies
on host, vector and parasite population genetics also abound, but these, in turn, too seldom
incorporate spatial data. We believe that a framework for the formal integration of parasite
genetic connectivity with host-vector dynamics in heterogeneous space is needed to bridge

these gaps.

Landscape genetics, a body of theory aimed at combining landscape ecology and population
genetics, is now approaching twenty years old>®. Over this period, landscape genetic
approaches have primarily examined the impact of habitat fragmentation on genetic
differentiation (e.g., Cushman et al. (2012)°%%), land use and environmental change on the
genetic diversity of threatened species (e.g., Wasserman et al. (2013)°%7), as well as the
sustainable management and commercial exploitation of others (reviewed in Sommer et al.
(2013)°%%). The spread of parasitic disease, however, has drawn only limited attention from

% and chronic wasting disease®’’, research has

the field. Pioneered by work on rabies®
targeted a handful of viruses (reviewed by Biek and Real (2010)*’!; see also Dellicour et al.

(2016)°") and microbes (notably Batrachochytrium dendrobatidis®’), helminths with direct

574,575 576-579

life cycles and their hosts. Systems involving vector-borne pathogens or several
intermediate hosts>*” have been mostly spared from investigation. We believe the application
of landscape genetics to vector-borne disease agents, especially including landscape genetic
simulation modelling®' (see Glossary), has significant, underappreciated potential to

inform targeted disease control strategies.

In this opinion piece, we highlight the need for landscape genetic and genomic tools to study
parasitic disease and present a framework for how they might be implemented. In doing so,
we first provide an overview of landscape genetics/genomics, the role of landscapes in
driving genome-wide adaptation in parasites, and discuss challenges and prospects for the
use of landscape genomics to understand the biology and control of parasitic disease. We
often refer to Chagas disease, recently ranked as the highest parasitic disease burden in the
Western hemisphere®®. In the absence of vaccine or cure, intervention strategies against

such neglected zoonoses may profit most from the landscape genomic approach.
5.2.2 What is landscape genetics?

A primary goal of landscape genetics is to understand how landscape features influence

583 Key concepts in landscape

observed spatial genetic (neutral or selection-driven) structure
genetics involve correlating genetic data with geographic data through individual-based
measurements of dissimilarity. For example, genetic distances (i.e., dissimilarity matrices)
can be quantified using individual-based metrics, such as proportion of shared alleles D%

or Rousset’s 4°%. In all but the simplest models (i.e., isolation-by-distance or isolation-by-
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barrier), geographic distance is typically replaced by cost-distance>*®, which reflects both
the geographic distance between individuals and the degree to which the intervening
landscape is hypothesized to impede gene flow and underlying dispersal movements (i.e.,
isolation-by-resistance®’). Cost-distance is calculated across a resistance surface wherein
each cell in a geographic information systems (GIS) raster map is assigned a value based on
a hypothesized species-specific resistance to traversing the landscape feature the cell

represents’sS.

In a typical landscape genetic approach, cost-distances among individuals are calculated
based on multiple, competing resistance hypotheses. These cost-distances are then evaluated
(i.e., correlated) against empirical genetic distances among the same individuals, primarily
using the Mantel test and its derivatives (e.g., multiple regression on distance matrices
(MRDM) or partial Mantel tests within a causal modelling framework®®). Although
techniques such as distance-based redundancy analysis>®° are increasingly applied to test
landscape resistance on gene flow (e.g., Geffen et al. (2004)>!), Mantel-based approaches

are still the mainstay of landscape genetic analyses.

Landscape genomics extends landscape genetics to the exploration of genome-wide data (the
two terms are applied accordingly herein), often in search of patterns of covariation between
allele frequencies and environmental conditions (i.e., genotype-by-environment
associations (GEAs) — see Box 5.1). As these signs of selection may point to the role of
local adaptation in structuring populations, their study necessarily fuses into the framework

we introduce in the next section.
5.3 Landscape genomics to study parasitic disease

With the exception of recent theoretical work in the context of Lyme’s disease®”?, essentially
all landscape genetic studies applied to parasitic diseases to date have considered a single
level of transmission, focusing primarily on landscape resistance hypotheses that influence
movement processes and thus, gene flow, of principal reservoir hosts. For complex, multi-
species disease systems, we find that today’s landscape genomic methods warrant a more
inclusive, multi-level approach. In particular, we recognize resistance surface construction,
a precursor to several landscape genetic applications, as a convenient analytical step during
which interactions among host, vector and parasite can be formally integrated for further
analysis. In Fig. 5.1, we outline a multi-species landscape genomic approach to predicting
disease spread in host-vector-parasite systems. Fig. 5.2 breaks down the key translational
step, resistance surface construction, by example of Chagas disease. In brief, host
distribution (i.e., all spaces that permit host movement) is abridged by vector distribution

relative to host movement rate (parasite transmission remains viable where the two

207



distributions do not coincide so long as movement rate allows the host to re-enter areas of
overlap within the infective period). Likewise, vector distribution is abridged by host
distribution relative to vector movement rate. Added together, these effective distributions
determine parasite distribution. First, the values of different potential environmental
influences on principal local host and vector species movement through the landscape are
mapped. These landscape data become the primary sources for studying parasite spread.
Host and vector conductivity-to-movement surfaces are then calibrated based on
transmission competence and merged to create a parasite resistance-to-movement surface.
Parasite dispersal and resultant population genetic structure over this composite surface are
modelled directly using landscape genetic simulation software. Finally, simulated and
empirical parasite population genetic structure are compared to evaluate hypothesized
landscape effects at the multiple transmission levels that take part in the spread of disease.
Crucially, this approach does not rely on any assumption of genetic co-structure between

vector or host and parasite, a phenomenon rarely ever observed in natural systems™?.

Box 5.1 Landscape genomics and genotype-by-environment associations of parasitic disease

Landscape genomics scans genome-wide, high-density marker datasets to elucidate GEAs5%. As
specialized regression methods (e.g., mixed models that control for demographic history and drift%4)
identify environment-related clines in allele frequencies, possible targets of selection are not exposed
per se. Better yet perhaps, these emerge from regression as correlations to environmental predictors,
i.e., coupled to possible cause. Central ecological proxies such as temperature present intuitive
starting points in the search for these GEAs. Yet, depending on the system and objective, exploration
may venture far beyond classic considerations. In exploring the ‘landscapes’ of parasites, for
example, hosts and vectors often bear environmental variables of primary interest (and relevant
values might be retrieved from auxiliary sampling — e.g., clinical observations or genetic data from
the vector source). Here, the genetic bases of a certain phenotype (e.g., virulence) may stand at
question, such that putative ecological pressures (e.g., host density, coinfection®%) on this particular
trait are chosen to be scanned for responsive loci. In time, as countless cases of heterogeneity enter
regression and ever more GEAs unfold, landscape genomics promises to pass on a kaleidoscope of
potential gene function for follow-up experimental studies to explore.

GEAs are also essential to downstream analyses within the same field, e.g., to incorporate selective
forces in spatially explicit simulations of population genetic change (e.g., CDPOP325). Analyses of
this type may expose fundamental adaptive constraints that limit parasite range expansion and
response to climate change. Apart from such implementation, GEAs also enhance interpretation of
independent results. The upscaling of analysis to many thousands of markers vastly improves power
to unmask intricate demographic and evolutionary structures — gradients of selection, incipient
speciation, cryptic niches, etc. This enhanced resolution, however, also requires enhanced
approaches to interpretation and often calls on GEAs. For example, novel spatio-genetic visualization
tools (e.g., MEMGENE?®%) may expose instances where gene flow deviates from consistent patterns
of isolation-by-resistance. These deviations may issue from any number of selective processes.
Local adaptation is one such process and a topic of ongoing discussion in the study of parasites.
While the presence of locally adapted residents may impede genetic introgression (e.g., selection
against hybrids), it may just as well take opposite effect (e.g., frequency-dependent selection of rare
variants)5%’. Complementary information on GEAs provides critical guidance in navigating the many
possibilities and understanding how gene flow, drift and selection mosaics interact to drive parasite
local adaptation (see Gandon and Nuismer (2009)5%).
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Figure 5.1 Exploiting landscape genomics to predict parasite dispersal in heterogeneous
landscapes. The construction of a predictive map of parasite dispersal from high-resolution
landscape and genetic data is outlined in six steps (A-F). Step A is further detailed in Fig. 5.2 by
example of Trypanosoma cruzi transmission in southern Ecuador.

A. Host/vector resistance surface construction. Informed by biological and ecological data,
principal host and vector species are specified and the landscape variables underlying their
movement are mapped. Landscape features are assigned levels according to their putative impact
on host/vector movement and merged to create a landscape conductivity-to-movement surface.
Surfaces generated for both host and vector are then weighted, merged and converted to a
composite resistance-to-movement surface. If additional, host/vector-independent variables extrinsic
to parasite survival and development are hypothesized, the resistance surface may be further
updated to incorporate these requirements.

B. Landscape connectivity analysis. A landscape connectivity model (e.g., least-cost path analysis
or circuit theory) is generated using programs such as PATHMATRIX5% or CIRCUITSCAPE®, While
least-cost models specify single optimal paths of movement between sites on a resistance surface,
circuit theory considers multiple pairwise connections®8” and may enhance prediction of passive,
multi-dependent dispersal systems in landscapes of continuous resistance.
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Figure 5.1 (legend continued)

C. Study site identification and phase one genetic data collection. Guided by path analysis
results, phase one sampling locations are selected to encompass heterogeneous landscape
resistance. Parasites are sampled (i.e., host/vectors captured, parasites isolated and DNA extracted)
and DNA is sequenced.

D. Cost-distance analysis. Metrics of dissimilarity are calculated among individual genotypes (e.g.,
based on genome-wide single nucleotide polymorphisms) and correlated to cost-distances
(computed in, e.g., PATHMATRIX5%) separating these individuals (see main text) for preliminary
validation of the resistance surface constructed in step A. GEA interactions are also explored based
on various landscape features (see Box 5.1).

E. Data simulation and iterative resistance surface modification. Using tools like CDPOP325,
spatially explicit changes in population genetic structure are simulated as functions of individual-
based movement, reproduction, mortality and dispersal%8!. These models predict patterns of gene
flow (i.e., connectivity) between individuals based on the resistance surface constructed in step A
and GEAs detected in step D. Simulated connectivity measures are then compared to empirical
estimates from step D to further validate the resistance surface. Surface components (e.g.,
conductivity values (see Fig. 5.2, step A3)) are iteratively re-weighted until connectivity matches the
observed (i.e., pattern-process modelling).

F. Landscape model validation. The refined landscape resistance surface underlying parasite
dispersal in the phase one sampling area can now be extrapolated regionally. At a second,
independent site, parasites are sampled, sequenced and genotyped. Cost-distance analysis and the
goodness-of-fit between simulated and empirical connectivity at the second site determine the power
of the resistance map.

5.4 What makes landscape genomics such a powerful tool to study parasitic disease?

5.4.1 Accuracy in detection, precision in prediction

Spatially explicit models of parasite dispersal have traditionally been fitted and validated
against occupancy and abundance data®!%2, Genetic structure of the disease agents still
rarely replaces these response variables despite several clear advantages for host-vector-
parasite systems. Interpretation of occupancy and abundance data is complicated by
imperfect detection, and many zoonoses (e.g., Chagas disease and leishmaniasis, for which
surveillance is under-resourced, diagnostics are substandard, and symptoms are inconsistent)
are highly prone to this bias. Pairwise genetic data are robust to detection bias and offer far
greater resolution to inference on parasite dispersal, chiefly because genotypes not only
identify individuals but also dynamic associations of alleles, their origin and putative
location of intermediate genotypes. Predicting when and where genotypes and alleles end up
in the landscape based on their current spatial distribution is critical for disease control. For
example, increased resistance, virulence and transmission potential often arise only when

certain sets of genes come to combine!+363:603

, each uniquely routed by ecological features
of variable resistance-to-movement and selective force. As spatially explicit, individual-
based modelling turns ‘genotype-based’, intricate demographic and evolutionary
interactions (e.g., heterosis or selection for/against specific alleles and reproductive modes)

become decipherable from neutral and adaptive genetic structure in space and time.
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Figure 5.2 Composing a resistance map for the regional transmission of Chagas disease.
Resistance surface construction, the first step in cost-distance analysis (Fig. 5.1, step A), allows
multi-species parasitic disease systems to fold neatly into the landscape genomic approach. We
work though this key translational step by example of T. cruzi transmission in southern Ecuador.

A1. Specification of principal host/vector species. As host/vector specification founds all further
analyses, factors relating to transmission competence must be thoroughly examined, e.g.,
abundance, vagility, physiological and life-history traits determining susceptibility, tolerance and
transmission intensity. Studies on eclectic (also ‘host-fitting'14® parasites such as T. cruzi may require
that spatial study extent be reduced to scales at which limiting agents emerge. In Loja Province (ca.
100 km x 100 km), Sciurus stramineus is specified as principal T. cruzi host based on the rodent’s
year-round arboreal nesting, i.e., triatomine habitat that holds against limiting vegetation phenology
at the domestic-sylvatic interface*'2. This triatomine association is supported by other randomized
sampling®®® and blood meal analyses that link high infection tolerance to short-lived species with high
reproductive rates8%4. Rhodnius ecuadoriensis is specified as primary T. cruzi vector based on its
ecology, defecation and feeding patterns®% and wide distribution of sylvatic and synanthropic
populations in southern Ecuadors°,
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Figure 5.2 (legend continued)

A2. Specification of landscape features underlying host/vector movement. Data modelling®°
and algorithmic approaches®” specify land-cover type and elevation as two principal determinants
of triatomine movement at the scale applied in Loja. Analyses of triatomine genetic structure also
suggest a strong influence of human transport (i.e., roads) on dispersal at this scale®. These three
features also regulate host movement. S. stramineus is native to the Andes and, despite declines
from land-use change, populations are now common from 2,000 m to sea-level (similar to R.
ecuadoriensis®®®) in various forest and man-made environments®10.

A3. Composition of conductivity surfaces. Remote-sensing data on elevation, land-cover and
roads are rasterized and re-coded to conductivity-to-movement scores. In this case, re-coding is
coarse (e.g., for both host and vector, conductivity = 1 if elevation < 2,000 m), given that ecological
traits of S. stramineus (e.g., habitat/trophic flexibilityé'°) and R. ecuadoriensis (e.g., microhabitat
selection’%) likely buffer continuous landscape effects on movement. The product of the three scores
is then taken for each cell to generate host and vector conductivity surfaces.

A4. Abridgement and weighting of conductivity surfaces. The distribution of raster cells that
allow for host movement is now abridged based on vector distribution relative to host movement rate
and infection time. Cells conducive to vector movement are corrected based on host distribution in
the same manner: if the distance to the nearest cell where host-vector interaction is possible (i.e.,
where S. stramineus conductivity is non-zero) exceeds maximum parasite carriage distance by the
vector (equable to R. ecuadoriensis dispersal range (ca. 2,000 m, based on Schweigmann et al.
(1988)8'") when infection does not compromise lifespan and movement (e.g., Schaub (1988)8'2 and
Castro et al. (2014)813), the vector conductivity score is re-coded to zero. Once abridged, host
conductivity values are scaled by a coefficient that quantifies host relative to vector competence in
dispersing T. cruzi, weighing in factors such as vagility and transmission intensity (e.g., see
specifications by Devillers et al. (2008)8%1).

A5. Conversion to a composite resistance surface. The refined conductivity surfaces for S.
stramineus and R. ecuadoriensis are merged by addition, then inverted to generate the resistance
surface.

Early attempts to apply landscape genetic methodologies to infectious agents have yielded
unprecedented precision in disease prediction and surveillance. For example, by coupling
spatial analysis with phylogenetic methods, Biek et al. (2007) demonstrated segregated
dispersal trajectories and intermittent expansions among the viral lineages of an explosive
rabies outbreak in the mid-Atlantic United States®'*. Unrelated to selection on novel variants
(given few, irregular changes at adaptive loci), dispersal patterns were explained by viral
spread into low-elevation raccoon habitats and restrained dispersal behind the wave front.
This elevation-based patterning was recently affirmed using cost-distance approaches akin

to those outlined in Fig. 5.1°"% (see also applications on principal rabies hosts®!?).

As cost-distance methods begin to spread through virus research, cases from vector-borne
disease systems remain few and far between, but all the more compelling. In West Africa,
for example, Bouyer et al. (2015) built ‘friction’ maps to model least-cost paths between
Glossina palpalis populations and the ‘main tsetse belt’ of the region®’8. Paths were then
ranked by cost to identify isolated eradication targets in the fight against African
trypanosomiasis. Medley et al. (2015) also used landscape genetics to study disease vectors,
decomposing the invasion process of Aedes albopictus through the United States®’’. Here,

deft study design (e.g., flower vases recognized as preexistent larvae repositories in 26 cities
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connected by various traffic intensities) and high-resolution (30 m) land-cover sensing
provided for MRDM on range-wide data at multiple spatial scales. Results depict occasions
of long-distance, human-aided Ae. albopictus expansion followed by stepping-stone
dispersal as a function local landscape. Unfortunately, however, both of these studies did not
advance their powerful resistance models to simulation for additional validation, refinement
and extrapolation, i.e., steps E and F in Fig. 5.1 (yet, see an intriguing follow-up study®!® on
the scope of landscape genetic simulation modelling to evaluate pattern-process

relationships such as those inferred by Medley et al. (2015)).
5.4.2 Power to explore the unorthodox and unknown

As isolation-by-resistance featured prominently in the studies above, landscape effects on
non-neutral genetic structure have been largely discounted so far. Yet, dispersal outcomes
are without question also shaped by context-dependent adaptive change (and vice versa —
see Box 5.1), sometimes to profound effect (e.g., hybridization under insecticidal
pressure®!’). To this end, landscape genomics’ pioneering approach to simultaneously detect
divergent alleles and their ecological drivers, then to visualize and simulate both neutral and
selection-driven structure in heterogeneous space, has received special attention (Box 5.1).
There is considerable scope for the use of landscape genomic tools to study adaptive genetic

change in parasitic disease and clear advantages over classic population genetic approaches.

Among several parasite species, reproduction is not uniform, with clonal propagation
interspersed by unorthodox modes of genetic exchange. Especially for parasitic protozoa,
these episodes of recombination remain incompletely defined both in mechanism and extent
(see Chapter 2). Traditional approaches to detect targets of selection scan for excess genetic
differentiation between discrete populations (e.g., outlier analyses such as BAYESCAN#*%),
However, methods to define such populations a posteriori (e.g., Pritchard et al. (2000)*%)
rely on assumptions of Mendelian sexuality and are thus liable to distort results at the earliest
stage of analysis when applied to parasitic species. In contrast, landscape genomics’

correlative GEA methods (see Box 5.1 and Forester et al. (2015)°) are individual-based

and make few assumptions about the underlying reproductive mode.

Host-vector-parasite systems are also inclined to subtle, step-wise adaptive change, i.e.,

weak selection on individual alleles®'®. In parasites, this tendency relates to high mutation

563,618,619

rates and population sizes , as well as elevated gene redundancy and ploidy®. In hosts

and vectors, the effect likely arises from prevalent polygenic, epistatic and pleiotropic

control of interaction traits®2%-62!

. Simulations show how quickly differentiation-based
methods lose power to detect adaptive change as selection intensity weakens, reaching

complete impotence at levels still easily managed by correlative alternatives®>’. The latter
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take further leverage from study designs that prioritize environmental representation over
genetic sampling intensity per site, a strategy counter to classic methods based on clustered
sampling. These arguments were recently taken from simulation to reality in coastal Kenya,
where Mackinnon et al. (2016) applied environmental association analysis to genotypes
obtained from a hospital serving ethnic groups long segregated among ecotypes of
contrasting malaria prevalence®®!. After rejecting dozens of disappointing candidates
proposed by methods of the past, this search for resistance loci exposed several divergent
genes that mitigate brain inflammation, a symptom of severe malaria. Moreover, the study
detected subtle clines in the sickle-cell mutation B>, signs of balancing selection seldom

distinguished at such fine spatial scales.

Naturally, landscape genomics’ potential to enhance resolution and power in the study of

parasitic disease also has its caveats. A few areas of concern are introduced in Box 5.2.

Box 5.2 Limitations of landscape genomics to study parasitic disease

As landscape genetics is just entering its teenage years, uncertainties come and go. Lasting
concerns relate primarily to statistical power (e.g., high type | error due to non-independence,
multicollinearity and multiple testing) and empirical sampling design (e.g., how to select spatio-
temporal scales). These issues affect the entire body of landscape genetics/genomics and are under
extensive treatment®22623 increasingly aided by simulation software®24. We therefore turn to caveats
of particular relevance to applications on parasitic disease.

We share concerns that high-resolution model output from simulations of gene flow is easily
generated, taken for precision and misapplied®25. Ethical arguments for immediate translation and
high visibility of research on human disease (e.g., Quick et al. (2016)%26 intensify this risk. Also, our
framework will sometimes rely on limited ‘expert knowledge’ to elaborate core model input (i.e., the
multi-species resistance surface). Moreover, resistance-to-movement may involve variables (e.g.,
soil conditions for helminths®27) and scales (e.g., micro-geographic differentiation in Plasmodium®28)
for which empirical data are unavailable.

We also emphasize that landscape genomics may miss principal causes and consequences of
disease spread for phenotypes of non-heritable or complex genetic basis. Pathogenicity, for
example, can regulate disease spread®?® and founds on complex epistatic host-parasite interactions.
Not only is genetic structural variation known to underlie pathogenic differences ((e.g., Behnke et al.
(2011)830), host tolerance (likely of low heritability itself®3') further modifies infection outcomes.
Classic models of dispersal skirt this complexity by directly implementing phenotypic data (e.g.,
infection intensity, clinical forms), and classic approaches to detect adaptive variation have adjusted
to search beyond the single locus. Meanwhile, landscape genomics continues to define and apply
genotypes as proxies for phenotypes with limited discretion. For example, environmental resistance
may differ among genetic structural variants?', but standard metrics of dissimilarity do not measure
such differentiation. Indeed, defining and interpreting genetic structure is often troublesome and
tempts to simplifying but spurious assumptions. Such shortcuts through our framework require
caution. For example, in step A1 (Fig. 5.2), resorting to analysis of host/parasite genetic co-structure
to distinguish principal host species (see Mazé-Guilmo et al. (2016)°92) is rather hazardous, as is
linking GEAs to local adaptation while slighting other forms of selection (see Bierne et al. (2011)832),
Clearly, landscape genomic tools require discreet handling and refinement based on underlying
hypotheses, and interdisciplinary complementation remains indispensable to the study of parasitic
disease.
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5.5 Prospects
5.5.1 Conservation genomics in reverse

In conservation biology, landscape genomics strives to identify ‘conservation units’, i.e.,
genetically unique subpopulations to be preserved and/or managed distinctly to sustain
biodiversity of the whole®*®. In epidemiology, spatial genomics are crucial to identifying
operational units that maximize the reach of surveillance and control. Apprised of such
epidemiological units and their distributions, insecticidal campaigns (often too
indiscriminate to be sustainable in the past®>*), for example, might aim precisely to rule out
pivotal hybridization outcomes observed in vitro (see below) or capitalize on high landscape
resistance to gene flow (see Bouyer et al. (2015)>’®), while diagnostic approaches might be
differentiated based on particular genotypes expected to arrive in a region. A look at
leishmaniasis further elaborates these points. Hundreds of thousands, primarily the poor, fall
victim to this neglected zoonosis every year, with cases ranging from self-healing cutaneous
infection to severe disfigurement and fatal visceral disease. The distinct pathologies ascribe
to certain subsets of Leishmania species®®, yet these may also proliferate as natural hybrids

170 For good reason, therefore,

of enhanced virulence, resistance and plasticity
underdeveloped molecular surveillance strategies are now remonstrated in such places as
Colombia, where massive efforts to innovate this area are currently underway®*. Elsewhere,
especially in Brazil, much effort has been devoted to ecological niche modelling (ENM) to
inform Leishmania control. While such occupancy-based correlative and algorithmic
methods provide essential guidance, direction is generally less immediate. For example,
ENM rates nearly all of Amazonia at current risk to leishmaniasis and projects southward
vector expansion under climate change®’, but what next? Where are limited intervention
resources to be allocated, and when? Might temperatures be approaching tipping points to
rapid proliferation of disease? In a landscape genomic cost-distance framework that models
connectivity and genotype movement in the very process of identifying resistance variables,
simulation-based analysis may promptly transition to such questions. For example, after
pattern-process modelling American marten (Martes americana) dispersal in the Rocky
Mountains, Wasserman et al. (2012) proceeded right to forward-simulation of population
structure in a warming climate®*®. Results not only detail gradual habitat and population
fragmentation through space and time, but specify imminent warming thresholds beyond
which genetic connectivity plummets to levels that threaten extinction. Translating such
innovations from landscape genetic/genomic conservation studies offers to accelerate

progress towards high-impact solutions against pervasive disease under global change.
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5.5.2 Groundwork for genetic modification in disease control

In sub-Saharan Africa, the burden of neglected diseases such as leishmaniasis is far
outweighed by that of malaria. As existing control strategies cannot keep pace (e.g., ca.
400,000 malaria deaths in 2015%), the swift replacement of natural vector populations
through transgenic, Plasmodium-refractory types offers much appeal. However, this
approach depends on mating among transgenic and natural mosquitos in populations
unlikely to be panmictic (in fact, cryptic speciation is rather notorious to Anopheles gambiae,
principal malaria vector of the sub-Sahara®’). Therefore, patterns and processes of genetic
connectivity and reproductive isolation in the target environment must be well understood
to legitimize transgenic release and predict its manifold effects®*!. Landscape genomic tools
are designed precisely to forward such understanding. For example, after identifying key
drivers of dispersal from cost-distance analyses applied to native vector populations (e.g., as
in Medley et al. (2015)°”7), transgenic genotypes could be placed into landscape genomic
simulation modelling of mating, selection and dispersal in the landscape. Should the
transgene confer environment-dependent fitness costs (see Marrelli et al. (2006)%4?), various
simulators could also integrate this information to forecast gene flow and consequent
distribution of refractory types through the environment®?*, Simulations might also explore
to what extent transgene fitness costs must be reduced or inheritance must be biased
(transgenesis methods often exploit ‘selfish genetic elements’®*) for effective replacement
of native vector populations. Finally, based on resultant equilibrium conditions, Plasmodium
dispersal could be modelled among remnant (e.g., reproductively isolated) vector and human
populations in the framework outlined above. Here, resistance surface construction offers to
incorporate temperature-dependent vectorial capacity (e.g., changes in Anopheles immunity
and Plasmodium fitness®**) and other theoretical updates on disease spread in heterogeneous
space. In times to come, these explorations will help disambiguate and enhance the potential
of transgenic release strategies as well as consider how standard methods best round off

novel efforts to defeat malaria and other major parasitic disease.
5.6 Concluding remarks

Here, we claim a strategic place for host-vector-parasite interactions to join spatially explicit
analyses of genetic connectivity. This integration not only allies molecular epidemiology
with landscape ecology, but advances both into the realm of ‘landscape community

genomics’®

, only just envisioned to explore previously impenetrable eco-evolutionary
causes and consequences of genomic structure. First inroads would be well-timed to seek
out the potential of landscape genomics in forecasting land use, climate change and

intervention impacts on parasite dispersal. Parallel efforts underway across various
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disciplines offer ample opportunity to validate and synthesize results to ‘best practices’ for
sustainable disease control. Novel genome-typing strategies (e.g., pathogen GLST combined
with restriction site-associated vector DNA analysis®*®) that now place individual-based,
multi-species genomic analyses within possibility of a single study also impel research on
interactions between genotype-genotype factors (e.g., hybridization and co-evolution) and
disease heterogeneity in the environment. However, no single study can or should take on
too many questions at once. Only following clear hypotheses on a few factors of interest can
landscape genomic methods such as those presented above be adequately tuned and, when
necessary, replaced. Indeed, the framework presented here is just that — a framework, and
discretion is advised. We hope to have placed helpful rails, not unchangeable rules, into

challenging new terrain for the study and prevention of parasitic disease.

Box 5.3 Glossary.

Cost-distance: The cumulative resistance of intervening landscapes to the movement of individuals
(or populations, etc.) between a pair of sites. These ‘distances’ are typically calculated by scoring
landscape variables (e.g., elevation) based on (putative) resistance-to-movement, plotting resistance
scores into a raster grid (see ‘resistance surface’ below) and adding up grid values along the path(s)
of interest.

Genotype-by-environment association (GEA): A correlation between genetic and environmental
variation and possible effect of natural selection. In landscape genomics, specialized regression
models are applied to genome-wide data collected in heterogeneous landscapes to detect these
GEAs as environment-related clines in allele frequencies.

Isolation-by-distance (IBD): In the IBD model, the probability that an individual disperses to any
site in the landscape depends only on its distance to that location. Here, no matter the heterogeneity
in the landscape, ‘cost-distances’ (see above) between sites relate directly to straight-line Euclidean
distances, given that landscape features are not considered to resist movement and/or modify paths
of dispersal.

Isolation-by-resistance (IBR): Unlike for ‘IBD’ (see above), Euclidean distances do not suffice to
predict the level of dispersal between a pair of sites in the presence of IBR. Rather, the probability
that an individual disperses from one site to another depends also on the resistance of the intervening
landscape to the movement of that individual (see ‘cost-distance’, above).

Landscape genetic simulation modelling: A spatially explicit modelling framework to simulate the
actions and reactions of organisms and attendant genetic structure in heterogeneous space.
Simulations are generally individual-based, such that these actions and reactions (e.g., dispersal,
mating, survival) depend not only on user-defined landscape heterogeneity but also on inter-
individual differences in age, sex, fitness, etc.

Pattern-process modelling: A modelling scheme that evaluates whether an underlying process
inferred through empirical induction can produce the patterns (e.g., population genetic structure)
observed in the data, and how well (i.e., at what precision, accuracy and repeatability) it can do so.

Resistance surface: A representation of the landscape, often in raster form, in which each location
(e.g., raster cell) is assigned a cost or resistance value which affects movement and gene flow
through the landscape.
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Chapter 6

General discussion

6.1 Final synopsis

This dissertation infiltrated the secret lives of 7. cruzi and L. infantum using a combination

of classic population genetic theory and modern genomic tools.

Our WGS analyses on 7. cruzi aimed to understand population structure and underlying
reproductive mechanisms at an endemic transmission focus of Chagas disease in Loja
Province. By specializing polymorphism analysis for short-read data on repeat-rich genomic
DNA and verifying new hypotheses with targeted subcloning and re-sequencing
experiments, we apprehended microgeographic reproductive polymorphism and,
importantly, a focus of sexual recombination within the study landscape. As elaborated in
Section 6.2 below, these findings contradict long-standing dogma about the role of genetic
exchange in shaping contemporary 7. cruzi population structure and various experimental

and long-read sequencing follow-up studies are planned.

Our WGS analyses on L. infantum aimed to understand the extent and mechanisms by which
this species has re-diversified after bottlenecking into the New World during the colonial
era. Disentangling the influences of selection and demographic changes on the subtle genetic
heterogeneity we exposed across Brazil required a variety of computational methods
(coalescence modelling, copy number analyses, phylogenetics on phased and simulated
genotypes, etc.) as well as phenotypic assays and gene dose measurement in monoclonal
subcultures using qPCR. Section 6.3 elaborates on our discoveries as well as on

shortcomings and follow-up needed to substantiate the theories we have proposed.

Complementary to the above WGS studies, we also developed GLST, a culture-free
genotyping system that rapidly constructs genome-wide amplicon libraries for a pathogen of
interest by co-amplifying hundreds of target SNPs from DNA extracted directly from the
vector or host. GLST is advantageous when the pathogen is difficult or expensive to enrich
representatively ex vivo or when its genome is known to contain large amounts of invariant
or analytically intractable DNA. We experienced these limitations with 7. cruzi in Chapter
2 and therefore provided first proof-of-principle for GLST using metagenomic extracts from
T. cruzi-infected triatomines. As Section 6.4 explains, we must now extend proof-of-

principle to other important pathogen systems and sample types. This work is already
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underway with Plasmodium vivax, a very poorly culturable parasite’*’ and the primary cause

of malaria outside of sub-Saharan Africa®’.

Finally, we also explored the possibility to enhance predictions on parasite dispersal and
selection by explicitly coupling high-resolution genetic and spatial analyses in a landscape
genomic resistance modelling approach. Our theoretical framework is novel in the
epidemiological context but has not yet been verified with empirical data. Section 6.5
discusses future implementation in light of the complex sources of parasite population

genetic structure we encountered in Chapters 2 and 3.
6.2 Key findings, limitations and prospects of research from Chapter 2

Chapter 2’s population genomic evidence for meiotic sex in clones of 7. cruzi field isolates
arguably represents the most important finding of this dissertation. 7. cruzi has for decades
been considered a paradigm of predominant clonal evolution for which nuclear genetic
exchange is too rare to modulate population structure'® and might only occur via parasexual
mechanisms observed in vitro by Gaunt et al. (2003)!7!. The occurrence of sex in
contemporary 7. cruzi populations is so important because it accelerates genetic and
phenotypic diversification. Biomarkers and genetic bases of important biomedical properties
such as drug susceptibility, pathogenicity and tissue tropism become less stable and less
reliably attributable to particular lineages or groups. This complicates taxonomy, diagnostics

and drug design®*.

Exposing meiotic signatures in Chapter 2°s WGS data was challenging due to the extremely
repetitive nature of the 7. cruzi genome. Less than 50% of the genome proves to be reliably
mappable based on rates at which virtual reads (i.e., sequences created by cutting the
reference assembly into segments of lengths equal to those of Illumina reads) do not

correctly map back to the positions they are cut from?®*°

. We managed this dilemma by
rigorous masking and, more importantly, by placing special focus on qualitative analyses
robust to artefactual diversity that can distort inference from poorly mapping genomes. In
Fig. 2.3, for example, we demonstrate linkage decay curves instead of simply quantifying
mean linkage between variant sites. In Figs. 2.4 and 2.5, we pinpointed specific tree
topologies that discontinuously represent the data rather than simply concluding that
phylogenetic instability occurs within and among chromosomes. We also managed poor
mappability* by exploiting three types of comparative analyses as controls. The first and
most frequent type of comparison involved the parallel analysis of parasite groups
representing different geographic and phylogenetic partitions of the sample set. Linkage
0

(Fig. 2.3), recombination (Tbl. 2.2), Fis (Supplementary Fig. 2.3), tree topology weighting*’

(Fig. 2.4) and somy calculations (Fig. 2.6), for example, were divided among (or organized
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to visually separate) samples from El Huayco, Ardanza and Bella Maria communities in Loja
Province, Ecuador. Differences observed between sample groups subjected to identical
methodological procedures could thereby begin to be considered to represent true biological
phenomena rather than systematic error. The second type of comparative approach involved
the use of simulated control data. For example, we simulated recombinant and non-
recombinant chromosome evolution to determine statistical power in Hardy-Weinberg null-
hypothesis testing (Supplementary Fig. 2.3) and to validate recombination analyses with
LDhat**® (Tbl. 2.2). We also tested the effects of sample size reduction to include only one
T. cruzi clone per infection source (e.g., Supplementary Tbl. 2.3 and Supplementary Fig.
2.7a). In our third comparative approach, we obtained Illumina reads for TcI-Sylvio (the
same reads Talavera-Lopez et al. (2018) used in combination with PacBio data to construct
the current reference assembly?%3%®) to optimize many methods, e.g., to specify mapping
and variant filtration criteria or to calibrate the windowed somy estimation approach

(Supplementary Fig. 2.14).

We achieved robust inference from Chapter 2’s Illumina dataset with the above control
strategies in place, but the heavy masking integral to our short-read analyses also
substantially restricted precision and scope. For example, we could not comprehensively
define recombination breakpoint positions across the genome in order to derive more precise
estimates on the frequency of meiosis in the Bella Maria group. We also could not leverage
full genomic resolution toward reliable divergence estimation (e.g., using BEAST) for
Clusters 1 and 2, and analyses largely excluded information from large repetitive gene
families such as DGF, mucin, MASP and GP63%. Many of these gene families encode
surface proteins of central importance to the parasite’s interactions with the vector/host
immune system and its response to drugs’’%. They therefore represent precisely those parts
of the 7. cruzi genome in which the modification and transfer of sequence diversity through

sexual reproduction is of most applied interest.

There are clearly two ways forward. First, the Tcl-Sylvio reference assembly must be
enhanced and further field samples sequenced using long-read systems that have rapidly
advanced in the last decade. The current reference assembly was built using ca. 2 kb reads
produced by the first-generation PacBio RS platform. The new RS II platform with C4
chemistry now produces average read-lengths of 10 — 15 kb and Oxford Nanopore
Technologies have achieved read-lengths beyond 2 Mb, i.e., easily spanning across multi-
copy gene families and even entirely encompassing most chromosomal contigs established
for Tcl-Sylvio thus far. Future sequencing projects should also be applied to single 7. cruzi
cells, e.g., library preparation involving fluorescence activated cell sorting or microfluidic

partitioning strategies such as those introduced by 10x Genomics (www.10xgenomics.com).
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Single-cell sequencing can expose haploid gametes (e.g., on the basis of genome-wide
homozygosity) within diploid cell populations, pinpoint progenitors of recombinant
genotypes or distinguish individual chromosomal somy differences (e.g., trisomies inferred
in Fig. 2.6) when mosaic aneuploidy occurs®®. Somy differences are important because they
can expose potential non-meiotic or failed meiotic recombination events'’>**, They may
also play a role in reproductive isolation or relate to mating switches or mating types®!.
Monosomy on chromosome 13, for example, was frequently observed in putatively
recombinant (and otherwise diploid) 7. cruzi genomes from Bella Maria. This somy pattern
was not observed in genomes from El Huayco and Ardanza, where trisomies were more

common and clonality appeared to prevail.

The second way to advance understanding of genetic exchange in 7. cruzi leads into the lab.
It may be possible to specify the frequency, anatomical site and life cycle stage at which
genetic exchange occurs using in vitro and in vivo models by creating mixed infections with
potentially hybridizing parasite cells (e.g., clones from Bella Maria) modified to express
distinct bioluminescent (i.e., luciferases) and/or fluorescent proteins. Cells exhibiting co-

d®?. Genetic

fluorescence can indicate hybrid progeny formation and can be further analyze
engineering tools have, like sequencing technologies, rapidly advanced in recent years and
a CRISPR/Cas9 gene editing system® required for fluorescent hybrid detection has already
been established for 7. cruzi by collaborators at LSHTM%**. The system integrates T7 RNA
polymerase and Cas9 genes into ribosomal gene arrays and uses PCR products as guide
RNA. The homology-directed repair templates encode luciferase/mNeonGreen or
luciferase/mScarlet fusion proteins and are likewise transfected as PCR products, i.e., no
cloning step is required. This enables high-throughput genome-editing and fluorescence
tracking throughout the parasite life cycle, also in fixed cells (mNeonGreen and mScarlet

fluorescence does not require ATP)®*,

The Machado group at Universidade Federal de Minas Gerais in Brazil also describes an
alternative to genome-editing to create distinctly fluorescing 7. cruzi lines®>®. The approach
cultures parasites in media containing the nucleoside analogues 5'-chloro-2'-deoxyuridine or
5'-i0do-2'-deoxyuridine. These molecules are incorporated into the parasite DNA (replacing
thymidine) and give distinct signals (red and green, respectively) after immunostaining cells.
This method represents a valuable complement to fluorescent tagging via genome-editing
because it is less likely to involve side effects on cellular physiology or alter survival and
fitness. Genome-editing, however, also enables gene expression detection, overexpression
or knockout studies, not just the color-tagging of parasite cells. For example, the
CRISPR/Cas9 system could be used to complement transcriptomic studies in profiling the

activity and timing of molecular machinery suspected to underlie genetic exchange processes
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inferred from Chapter 2. These studies could begin to focus on parts of the ‘meiosis detection
tool kit’, a small set of genes with homologs in animals, plants, fungi and protists that are
expressed only during meiosis and for which null mutations do not affect other cellular
processes or traits®>®. These include SPO11, a topoisomerase required for DNA double
strand breaks that initiate meiotic recombination; HOP1, a synaptonemal complex protein
that promotes chromosome pairing by oligomerizing at double strand break regions; and
DMCI1, also a vital synaptonemal complex protein that facilitates homologous
recombination by forming specialized filaments with single-stranded DNA®. SPO11 is
interesting because it occurs in two homologs within 7. cruzi and related trypanosomatid
genomes, but the function of these homologs have not yet been analyzed®’. HOP1 and
DMC1 are interesting because their expression is known to coincide with 7. b. brucei gamete

658

production in the salivary glands of the tsetse fly™°. Both genes are also expressed in insect-

stage metacyclic L. major promastigotes, although an association to meiotic division has not

659 Next to the meiosis detection toolkit, it would also be

been confirmed in the latter genus
interesting to further profile the activity of RADS1, a recombinase protein homolog of
DMCI that was recently shown to promote the occurrence of fused-cell hybrids in 7. cruzi

epimastigote culture®>

. RADSI1 is known to interact with DMC1 prior to meiotic synapsis
but also represents the strand exchange protein vital to mitotic recombinational repair of

eukaryotic DNAS,

In establishing the mechanism and frequency of genetic recombination in 7. cruzi, above
types of genetic engineering studies will also help determine the potential for experimental
quantitative genetic approaches to help identify the genetic bases of epidemiologically
relevant traits. If meioses can be frequently induced in the lab, then crossing systems could
conceivably create a spectrum of genetic and phenotypic diversity among hybrid progeny
using parental lines that differ in biomedical properties such as drug susceptibility or
virulence. Phenotyping and long-read WGS applied to these progeny would then enable
regression analyses that predict causal variants or gauge the extent of polygenicity
underlying the phenotype. The sequencing of hybrids and progenitors could also help
establish how often recombination occurs in the surface-gene families we were unable to
interrogate in short-read analysis. These are very ambitious objectives, but they are
enheartened by previous successes using forward genetics with related trypanosomatid
species. For example, quantitative trait locus (QTL) mapping by Morrison et al. (2009)%!
associated levels of spleen and liver enlargement in 7. brucei-infected mice to sequence
variation within a 100 kb region of interest in the parasite’s ca. 26 Mb genome®®?. Additional
markers have narrowed down the splenomegaly QTL to a set of just 52 genes and reverse

genetic tools are being designed to further specificize causal variants®,
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6.3 Key findings, limitations and prospects of research from Chapter 3

Chapter 3 used a combination of phylogenomic and phenotyping approaches in its attempt
to reconstruct L. infantum divergence histories and tease apart the roles of demographic
changes and selection processes during range expansion into the New World. Like in
Chapter 2, a key finding from this research was the presence of genetic exchange. It was not
simply the detection of genetic exchange, however, that was most interesting in our study of
L. infantum given that a considerable body of experimental!>#244245:293294 anq field
evidence?*6:293:297:298.664 for periodic meiosis-like sex within and between Leishmania species
has accumulated over recent decades. Several studies have also demonstrated novel
phenotypic variability among Leishmania hybrids and their parental lines'>*?°>2%_ What was
most important from our observations of genetic exchange in L. infantum was that we could
reconcile the frequent and unmistakable presence of intra-specific hybridizations with recent
(post-Columbian) parasite demographic restructuring linked to range expansion (divergent
contact between bottlenecked subpopulations, perhaps subpopulations that separately
entered the New World) and that these hybridizations restore gene function at a genetic locus
that controls sensitivity to miltefosine, a front-line anti-leishmanial drug?>®2% (see Fig. 3.6a).
The abundant signs of both outcrossing and endogamic genetic exchange (recall ubiquitous
excess homozygosity in Fig. 3.3) may also explain the success we had with fastsimcoal23!
models in which genetic (re-) connectivity between demes was simulated to involve classic

Mendelian mating events.

Among the weaker elements of Chapter 3 was our suggestion that convergent selection
processes (not simply founder effects) have contributed to the widespread proliferation of L.
infantum isolates with genomes in which the recently identified miltefosine sensitivity locus
has been fully deleted from chr31. This theory hinges on only two pieces of evidence. First,
we did not observe perfect monophyly for deletion-carrying (Del) isolates because the
phylogenetic positions of a small group on non-deletion type (NonDel) isolates were found
to nest within the former clade (Fig. 3.4). Absence of monophyly is consistent with multiple
deletion origins as opposed to widespread deletion inheritance from a common ancestral
mutant. However, it could be that cryptic introgression has broken up Del monophyly and
misled us to the conclusion that these isolates represent a true paraphyletic group. However,
Del paraphyly was supported by the second piece of evidence that deletion locus boundaries
covary with phylogenetic variation in the dataset. Distinct, phylogenetically correlated
deletion architecture suggests the occurrence of independent (convergent) deletion origins
in different clades. Our method of deletion locus boundary detection, however, was based
solely on read-depth analysis and certainly requires additional validation, e.g., using Sanger

sequencing of PCR amplicons that span the junctions formed between deletion breakpoints.
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Furthermore, it should be verified whether repeat motifs around the deletion locus support
the generation of variable deletion sizes via homologous recombination or whether such
variation more likely stems from smaller INDEL mutations subsequent to a shared ancestral

deletion event.

Pursuing the possibility that selection is contributing to L. infantum genetic differentiation
in the New World should also involve better measurement of parasite fitness proxies in host
and vector stages, ideally using larger sample sizes than those used in our phenotypic (ecto-
3’-nucleotidase and ecto-ATPase activity) assays. First steps in this direction might, for
example, compare Del vs. NonDel susceptibility to neutrophil extracellular traps. Parasite
capture by these web-like chromatin structures represents an essential component of the host
immune response during early stages of infection and is known to vary in efficacy depending
on the level of ecto-3’-nucleotidase activity in L. infantum promastigotes***. Our
collaborators at FIOCRUZ have already begun this research. Considering parasite
performance in the vector, it would be interesting to assess infectivity (e.g., quantify post-
bloodmeal parasitaemia at different timepoints) and transmissivity (e.g., quantify infective
dose after parasite maturation/migration to the salivary glands) of Del and NonDel isolates.
It would be especially informative to perform these assays on both Lu. longipalpis and Lu.
cruzi vectors given a loose association observed between the geographic distributions of
these sand fly species and L. infantum population genetic subdivision in western Brazil. The
use of induced or natural (second-generation) parasite hybrids could also significantly
improve the ability of host and vector infection assays to advance understanding on the
evolutionary significance of the chr31 deletion and other sequence variants. Inference in
Chapter 3 was often challenged by the fact that phenotypes and sequence variants of interest
occurred on very few genetic backgrounds (one of two phylogenetically divergent groups
contained most non-deletion type isolates and the other, very homogeneous group contained
all deletion-carrying isolates), making the dataset’s few hybrids very valuable in helping
expose confounding kinship effects (e.g., in Supplementary Fig. 3.3, see how samples such
as the putative F, recombinant NonDel MT 3210 help clarify that genome-wide gene copy
number variation is predicted by geographic (state) origin and not — as it might first appear

— by presence/absence of the chr31 deletion locus).

Assessing more hybrids and detecting more divergent subpopulations will not only improve
genotype-genotype and genotype-phenotype association studies but also help to resolve
whether L. infantum was just once or many times introduced to the New World. This
question was another that could not be resolved definitively in Chapter 3. We recommend
attention to the strongest possible sources of vicariance (e.g., the Andes) and regions

representing different (e.g., Spanish and French) colonization histories in future sampling
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designs. Additional, possibly GLST-based L. infantum typing in Brazil (e.g., filling sampling
gaps in Parana, Goids and Tocantins) and other Latin American countries (e.g., where lower-
elevation corridors cross the Andes in northern Colombia or southern Ecuador) might also
facilitate landscape genetic approaches towards a more conclusive reconstruction of New

World colonization events (see further discussion in Section 6.5).

All these future efforts, however, are likely to experience low American L. infantum genetic
diversity as a limiting factor in some stage of analysis as we did time and again in Chapter
3. Diversity was too low, for example, to make use of intra-chromosomal linkage patterns
for robust verification of chr31 deletion convergence or to clarify whether backcrossing
events are responsible for the nested positions of some NonDel isolates within the Del clade
(see further above). Establishing whether the low levels of polymorphism expected to occur
in most American L. infantum datasets (e.g., see the short branch lengths in Fig. 3.4’s
phylogenetic tree, including those of geographically disparate, Honduran isolates) are
sufficient to answer the question of interest is therefore paramount to study proposal and

>39 a5 did our

sampling design. Simulated genotypes, perhaps involving ‘spiked mutations
controls from Chapter 2, may help achieve the power analyses required. It is also
recommended to complement analysis of the nuclear genome with that of the kinetoplast
DNA, which we did not yet complete in Chapter 3. A number of studies on 7. cruzi have
reported mitochondrial recombination without detectable nuclear genetic exchange!™. If this
phenomenon is occurring in L. infantum, kinetoplast sequence variation may expose past
demographic processes that are not chronicled in the nuclear genome. One may also find
cases where genetic signals of interest have become homogenized in both nuclear and

kinetoplast minicircle sequences but remain pure in the maxicircle DNA (unlike minicircles,

maxicircles do not appear to mosaicize (or maintain heteroplasmies) in Leishmania spp.)*.
6.4 Key findings, limitations and prospects of research from Chapter 4

Chapter 4 developed a multiplexed amplicon sequencing strategy we refer to as GLST to
measure genome-wide pathogen sequence variation using uncultured sample types. The
simple PCR-based ‘genome-typing’ strategy is valuable because culture-based methods
often introduce selection bias and require resources inaccessible to many labs, especially
those operating in less developed countries and/or where endemic pathogen transmission is
most relevant to public health. We provided proof-of-principle by applying GLST to
metagenomic DNA extracts from the intestinal tracts of naturally infected triatomines. GLST
detected 368 SNP variants in 203 7. cruzi amplicons co-amplified from these vector samples
and hundreds more in amplicon libraries created for Tclll, TcIV and TcVI reference clones.

GLST thereby achieved important resolution benchmarks, including the detection of
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isolation-by-distance relationships within Tcl and the potential for multiple-lineage analysis.
However, the study only used one uncultured sample type and the sample set represented a
medley of donations from collaborators without a specific epidemiological question in mind.
It is therefore now clearly the next step to demonstrate the transferability of GLST to
different sample types and pathogen systems whilst simultaneously pursuing a specific
research goal beyond that of method development. We have therefore already designed a
second GLST panel for P. vivax with the intention of tracking a major malaria epidemic
emanating from the Venezuelan Amazon. Desperate socioeconomic circumstances have led
a growing number of people to work in illegal gold mining areas, especially at a mine known
as Las Cristinas in Bolivar state. Frequent migrations to/from Las Cristinas (often by
immunologically naive people), rapid deforestation and the general collapse of health
infrastructure (no drugs, diagnostics, vector control, etc.) are fueling a malaria outbreak of
unprecedented proportions in the region and reshaping malaria epidemiology at the national

scale®®.

Our new P. vivax GLST panel co-amplifies 107 SNP loci identified in WGS data by Oliveira
et al. (2017)%¢. This publicly available sequencing project contains the short-read data of 84
P. vivax clones from Mexico, Peru, Colombia and Brazil. We singled out these 107 PCR-
multiplexable SNP loci because each locus shows polymorphism in clones from all four
countries of the study. Each locus, however, is polymorphic in at most 50% of each country’s
clones. Finally, each locus represents noncoding DNA. We expect these criteria will
maximize our chances to detect neutral sequence variation suitable for epidemiological
tracking within Venezuela. The new study will apply GLST to DNA extracted from FTA
cards containing the blood of P. vivax-infected patients visiting the Instituto de Medicina
Tropical of the Universidad Central de Venezuela in Caracas (many thanks to Oscar Noya)
as well as from desiccated mosquitos captured in Bolivar state (many thanks to Jorge
Moreno). We have metainformation revealing that the majority of malaria patients at the
clinic in Caracas contracted their P. vivax infections during travels to Bolivar state. Fellow
PhD student Antonella Bacigalupo has already successfully amplified the blood spot
samples in first-round GLST reaction and hopes to achieve the same for the mosquito sample
set (huge thanks to Marnie Davidson for preparing metagenomic extracts). The idea is to
determine whether our GLST measurement in blood and mosquitos can predict the
metainformation we have about the malaria patients’ prior whereabouts in Bolivar state. The
mosquito sample set also covers intra- and peri-domestic collections between 2014 and 2017
such that we can assess spatio-temporal changes to parasite genetic diversity during an
exceptionally steep rise in malaria prevalence (316,401 P. vivax infections were recorded in

Venezuela in 2017 vs. 62,850 in 2014%%%). Furthermore, DNA was extracted separately from
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head and abdominal sections (another huge thanks to Marnie Davidson) of Anopheles
darlingi and An. albitarsis such that it may be possible to compare parasite genetic diversity
and genotype-specific transmissivity (i.e., colonization of the salivary gland) between

primary (An. darlingi) and secondary (An. albitarsis) vector species.

More generally, it would also be interesting to compare and complement epidemiological
inferences made from neutral GLST marker sets with those from vir gene or — in the case of
P. falciparum — var gene analysis. These are hypervariable, Plasmodium-specific multi-copy
gene families key to antigenic diversity and cytoadherence®’. Some subsections are also
amenable to conventional amplicon sequencing, i.e., using a single primer pair in PCR®®,
Clustering analysis of var gene DBLa amplicon reads has become a powerful approach in
studying immune selection but diversity is often considered too complex to be tractable for

dispersal studies beyond the most microgeographic of scales®3-6¢,

Comparison of our P. vivax GLST panel to the 71-SNP barcode recently introduced by
Benavente et al. (2020) is also of high interest. The authors used linkage block tagging®”
and machine-learning methods to find SNPs with maximal predictive power for P. vivax
source tracking (to the country level) but did not yet design a delivery system for these SNPs.
Both barcode design and implementation occurred in silico using WGS data and design did
not test amenability to (multiplexable) PCR or other non-WGS genotyping techniques.
Combining our focus on panel adjustability and multiplexable deliverability with the
elaborate power optimization strategies demonstrated by Benavente et al. is an exciting

prospect for future research.
6.5 Key concepts, limitations and prospects of research from Chapter 5

Chapter 5 proposed a new landscape genetic framework to better understand the spread of
vector-borne disease through heterogeneous environment. We defined a pattern-process
modelling workflow that compares observed parasite genetic structure with that simulated
over a digital resistance surface summarizing hypothesized effects of (remotely sensed)
landscape features on parasite transmission among vectors and hosts. However, the
complexity of our step-by-step illustrations in Figs. 5.1 and 5.2 reflects the fact that

implementation may not be so straight-forward in many contexts.

New insights into 7. cruzi and L. infantum demography from Chapters 2 to 4 suggest that
parasite genetic datasets can harbor complex genetic variation controlled by unmeasured or
non-environmental processes and traits. Such features may confound landscape genetic
analysis. For example, we suggested that reproductive polymorphism genetically segregates

sympatric Tcl populations in Loja Province, southern Ecuador. It is unclear whether this

227



polymorphism has any (measurable) association to the intervening or local environment. In
the New World L. infantum system, we emphasized historic demographic changes that may
confound or obscure the detection of contemporary landscape genetic effects (the ‘ghosts of
landscape past’®!). Genetic disorganization from bottlenecks and secondary contact
resulting from range expansion, for example, are likely to compound possible influences of
ecological variation (e.g., changes in Lu. longipalpis vs. Lu. cruzi abundance, transitions
between savanna (cerrado) and semideciduous forest or to urban zones) on L. infantum
diversity in southwestern Brazil. Extensive follow-up is required to understand how best to
incorporate (or whether one must avoid study foci containing) these complexities in a

landscape genetic simulation modelling approach.

We hope to contribute to this follow-up in our upcoming attempts to use landscape genetic
simulation to resolve whether L. infantum expanded into the New World from a single or
multiple introduction events. These attempts will not yet involve Chapter 5’s framework in
its fully-fledged form but rather exploit selected simulation features at larger spatial scales.
Specifically, we plan to simulate L. infantum gene flow on a rudimentary resistance raster
(incorporating only road networks because these represent a strong proxy for urbanization
and the dispersal of both dogs and sandflies®’!) and focus on the effect of one vs. two input

(founder) groups. The landscape genetic simulator CDMetaPOP32°

can handle multiple input
locations, e.g., one in in the Northeast of Brazil (e.g., Fortaleza or Recife) and another at a
Spanish colonial port such as Buenos Aires, Argentina, which is not separated by the Andes

from Brazil.

This question on single vs. multiple introductions aside, it will also be interesting to test our
landscape genetic framework in southeastern Brazil, e.g., in landscapes within the states of
Espirito Santo and/or Rio de Janeiro, where Lutzomyia distribution probabilities are
heterogeneous®’? and parasite sampling is more likely to involve genotypes belonging to a
single invasion process from the Atlantic Coast. This system might even prove more
tractable to landscape genetic simulation than that of 7. cruzi in Loja Province because L.
infantum host/vector spectrum is much less complex. L. infantum essentially uses just three
host/vector species in the New World (dogs, humans and Lutzomyia longipalpis) and cryptic

niche differentiation (e.g., haplotype-specific vectorial capacity®’

or segregated arboreal
and terrestrial transmission cycles'*’) is unlikely to complicate analyses given the very little

time the parasite has been evolving on the American continent.

We must also verify our landscape genetic predictive framework on 7. cruzi as initially
proposed in the rural landscapes of Loja Province. Implementation in Loja will be guided by

recent landscape genetic models of vector dispersal by fellow PhD student Luis Hernandez
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(dissertation currently in review). Using a genetic algorithm (GA) resistance surface
optimization approach®”*, Luis exposed road configuration as a primary determinant of gene
flow in Rhodnius ecuadoriensis, the primary vector of Chagas disease in the study region. It
will be interesting to quantify the extent to which 7. cruzi gene flow mirrors this relationship
(perhaps with higher sensitivity due to higher mutation rates®”>) and more generally to
examine hypotheses of parasite-vector genetic co-structure in the landscape. Co-structure
analysis is especially intriguing in this system because ‘paired genome-typing’ (i.e.,
acquiring genome-wide SNP data from both the parasite infrapopulation and the vector
individual representing each infection) has become increasingly viable with the arrival of
GLST for T. cruzi and Luis’ 2b-RAD system for R. ecuadoriensis®*. I1dentifying local
landscape conditions where parasite-vector genotype pairs deviate from global patterns of

covariation may help refine landscape genetic models for each protagonist.

Finally, we also aim to implement landscape genetic approaches in more densely populated
regions, specifically in the Metropolitan District of Caracas (MDC) in Venezuela. Chapter 4
illuminated extraordinary levels of Tcl diversity within the MDC and its patchwork of urban,
semi-urban and sylvatic environments spread across complex altitudinal relief. It is critical to
understand how regional parasite diversity is filtering into the city and threatening human
lives. Additional leverage using GLST is also especially promising here because we can
integrate the prolific citizen science triatomine collection program managed by our
collaborators at the Universidad Central de Venezuela. Not only will this help satisfy data-
hungry landscape genetic simulators but it is very important to help build public awareness
on the risks of vector-borne disease. This social component is especially relevant when the
public health benefit of the project may not be immediate or when uncertainties like ours on

reproductive polymorphism in 7. cruzi may complicate initial aims of research.
6.6 Final reflections

This PhD plunged into a great complexity of research topics and bioinformatic techniques.
Thousands of hours were spent in a grueling virtual underworld where sanity can easily be
lost. Several big pictures could nevertheless be apprehended, and sanity has remained
relatively intact. We advanced fundamental theory on two dangerous parasite genera by
exposing meiotic population genetic signatures in 7. cruzi and reconciling hidden
diversification and convergence processes in L. infantum with the evolutionarily recent
spillover of visceral leishmaniasis to the Americas from the Old World. Both of these
research outputs have important applied consequences. Sex creates new, potentially harmful
phenotypic diversity and thereby complicates surveillance and treatment. On the bright side,

however, it also brings new opportunities to quantitative genetic research. Hidden
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diversification in severely bottlenecked Leishmania populations dismisses the common
assumption that spillover events reduce parasite diversity to the extent that only host and/or
environmental variation is likely to explain variability in disease phenotypes. This
realization is crucial to a better understanding of unexpected clinical outcomes of American
visceral leishmaniasis observed in recent years. This dissertation also introduced new
technical and conceptual frameworks for epidemiological research. Chapter 4’s pathogen
barcoding technology substantially reduces the costs of genome-wide polymorphism
analysis and can therefore help studies achieve spatial sampling designs required for
meaningful inference. We observed time and again in this dissertation that the ability to
maximize sample sizes and to optimize spatial sampling configurations is paramount to
study success. Chapter 5’s landscape genomic framework is notable in that it repurposes a
traditionally conservation genetic study apparatus for the opposite objective of eradicating
parasitic disease. The framework requires high sampling effort, but ideally this downside
will encourage project designs that generate additional value in the process of data
collection. It is only ethical that field expeditions simultaneously serve to screen at-risk
human populations and bring medical attention when infections are found. General
awareness-building is also essential, especially considering diseases such as Chagas for
which infection is largely preventable so long as one knows that triatomines transmit the
parasite and that simple lifestyle changes can minimize triatomine colonization of the

domestic environment.

Many such lessons spring from this PhD’s quest to advance epidemiological theory and
pathogen surveillance tools. While demonstrating to what great extent whole-genome or
genome-wide polymorphism analysis can help clarify fundamental biological questions on
important vector-borne parasites, the dissertation also demonstrates that this power remains
contingent on many elements of study design. While genomic analysis is increasingly

advertised as ‘push-button’ exercise’%7

, various examples described herein emphasize that
computational pipelines can require very careful honing and that pre-sequencing study
decisions (e.g., spatial sampling design and strategies used to characterize multiclonal
infections) are as important as ever to robust inference. Continuing to advance cross-
disciplinary research platforms is also key because complex disease systems can only be
understood so far when analyses on parasite, vector, host and environmental variables

remain discrete. This dissertation should provide an important reference for the great amount

of work that lies ahead.
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