201 research outputs found

    A Radon diffraction theorem for plane wave ultrasound imaging

    Get PDF
    The rising demand on high frame rate ultrasound imaging applications necessitates the development of fast algorithms for plane wave image reconstruction. We introduce a new class of plane wave reconstructions that relies on a relation between receive data and image data in the Radon domain. This relation is derived for arbitrary dimensions and validated on multiple two-dimensional plane wave data sets. We further present a mathematical relation between conventional delay-and-sum and Fourier domain reconstruction methods and the method proposed. Our analysis shows that they all rely on the same physical model with slight variations in certain filtering steps and, therefore, the new Radon domain reconstruction yields similar results as other methods in terms of image quality. However, we show that our method offers a huge potential to improve computation time by reducing the number of applied projections and to improve image quality by introducing nonlinear operations in the Radon domain, e.g., for edge enhancement. As the Radon transform retains both angular and temporal information, the relation also provides new insights on the fundamentals of plane wave imaging that can be leveraged for optimizing acquisition schemes or for developing novel compounding strategies in the future

    Enabling strain imaging in realistic Eulerian ultrasound simulation methods

    Get PDF
    Cardiovascular strain imaging is continually improving due to ongoing advances in ultrasound acquisition and data processing techniques. The phantoms used for validation of new methods are often burdensome to make and lack flexibility to vary mechanical and acoustic properties. Simulations of US imaging provide an alternative with the required flexibility and ground truth strain data. However, the current Lagrangian US strain imaging models cannot simulate heterogeneous speed of sound distributions and higher-order scattering, which limits the realism of the simulations. More realistic Eulerian modelling techniques exist but have so far not been used for strain imaging. In this research, a novel sampling scheme was developed based on a band-limited interpolation of the medium, which enables accurate strain simulation in Eulerian methods. The scheme was validated in k-Wave using various numerical phantoms and by a comparison with Field II. The method allows for simulations with a large range in strain values and was accurate with errors smaller than −60 dB. Furthermore, an excellent agreement with the Fourier theory of US scattering was found. The ability to perform simulations with heterogeneous speed of sound distributions was demonstrated using a pulsating artery model. The developed sampling scheme contributes to more realistic strain imaging simulations, in which the effect of heterogenous acoustic properties can be taken into account

    Judge-Jury Agreement in Criminal Cases: A Partial Replication of Kalven and Zeisel\u27s The American Jury

    Get PDF
    This study uses a new criminal case data set to partially replicate Kalven and Zeisel\u27s classic study of judge-jury agreement. The data show essentially the same rate of judge-jury agreement as did Kalven and Zeisel for cases tried almost 50 years ago. This study also explores judge-jury agreement as a function of evidentiary strength (as reported by both judges and juries), evidentiary complexity (as reported by both judges and juries), legal complexity (as reported by judges), and locale. Regardless of which adjudicator\u27s view of evidentiary strength is used, judges tend to convict more than juries in cases of middle evidentiary strength. Judges tend to acquit more than juries in cases in which judges regard the evidence favoring the prosecution as weak. Judges tend to convict more than juries in cases in which judges regard the evidence favoring the prosecution as strong. Rates of adjudicator agreement are thus partly a function of which adjudicator\u27s view of evidentiary strength is used, a result not available to Kalven and Zeisel, who were limited to judges\u27 views of the evidence. We find little evidence that evidentiary complexity or legal complexity help explain rates of judge-jury disagreement. Rather, the data support the view that judges have a lower conviction threshold than juries. Local variation exists among the sites studied. The influences of juror race, sex, and education are also considered

    An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Get PDF
    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol–disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30–50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL−1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (±)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block

    Apheresis therapies for NMOSD attacks A retrospective study of 207 therapeutic interventions

    Get PDF
    Objective To analyze whether 1 of the 2 apheresis techniques, therapeutic plasma exchange (PE) or immunoadsorption (IA), is superior in treating neuromyelitis optica spectrum disorder (NMOSD) attacks and to identify predictive factors for complete remission (CR). Methods This retrospective cohort study was based on the registry of the German Neuromyelitis Optica Study Group, a nationwide network established in 2008. It recruited patients with neuromyelitis optica diagnosed according to the 2006 Wingerchuk criteria or with aquaporin-4 (AQP4-ab)-antibody-seropositive NMOSD treated at 6 regional hospitals and 16 tertiary referral centers until March 2013. Besides descriptive data analysis of patient and attack characteristics, generalized estimation equation (GEE) analyses were applied to compare the effectiveness of the 2 apheresis techniques. A GEE model was generated to assess predictors of outcome. Results Two hundred and seven attacks in 105 patients (87% AQP4-ab-antibody seropositive) were treated with at least 1 apheresis therapy. Neither PE nor IA was proven superior in the therapy of NMOSD attacks. CR was only achieved with early apheresis therapy. Strong predictors for CR were the use of apheresis therapy as first-line therapy (OR 12.27, 95% CI: 1.04-144.91, p = 0.047), time from onset of attack to start of therapy in days (OR 0.94, 95% CI: 0.89-0.99, p = 0.014), the presence of AQP4-abantibodies (OR 33.34, 95% CI: 1.76-631.17, p = 0.019), and monofocal attack manifestation (OR 4.71, 95% CI: 1.03-21.62, p = 0.046). Conclusion: s Our findings suggest early use of an apheresis therapy in NMOSD attacks, particularly in AQP4-ab-seropositive patients. No superiority was shown for one of the 2 apheresis techniques

    Direct oral anticoagulants versus vitamin K antagonists after recent ischemic stroke in patients with atrial fibrillation

    Get PDF
    Objective: We compared outcomes after treatment with direct oral anticoagulants (DOAC) and Vitamin‐K antagonists (VKA) in patients with atrial fibrillation (AF) and a recent cerebral ischemia. Methods: We conducted an individual patient data analysis of 7 prospective cohort studies. We included patients with AF and a recent cerebral ischemia (<3 months before starting oral anticoagulation) and a minimum follow‐up of 3 months. We analyzed the association between type of anticoagulation (DOAC vs. VKA) with the composite primary endpoint (recurrent ischemic stroke [AIS], intracerebral hemorrhage [ICH], or mortality) using mixed effects Cox proportional hazards regression models; we calculated adjusted hazard ratios (HR) with 95% confidence intervals (95% CI). Results: We included 4912 patients (median age 78 years [IQR 71‐84]; 2331 [47.5%] women, median NIHSS at onset 5 [IQR 2‐12]); 2256 (45.9%) patients received VKA and 2656 (54.1%) DOAC. The median time from index event to starting oral anticoagulation was 5 days (IQR 2‐14) for VKA and 5 days (IQR 2‐11) for DOAC (p=0.53). There were 262 AIS (4.4%/year), 71 ICH (1.2%/year) and 439 deaths (7.4%/year) during the total follow‐up of 5970 patient‐years. Compared to VKA, DOAC treatment was associated with reduced risks of the composite endpoint (HR 0.82, 95%CI 0.67‐1.00, p=0.05) and ICH (HR 0.42, 95%CI 0.24‐0.71, p<0.01); we found no differences for the risk of recurrent AIS (HR 0.91, 95%CI 0.70‐1.19, p=0.5) and mortality (HR 0.83, 95%CI 0.68‐1.03, p=0.09). Interpretation: DOAC treatment commenced early after recent cerebral ischemia related to AF was associated with reduced risk of poor clinical outcomes compared to VKA, mainly due to lower risks of ICH

    Ischemic stroke despite oral anticoagulant therapy in patients with atrial fibrillation

    Get PDF
    Objective: It is not known whether patients with atrial fibrillation (AF) with ischemic stroke despite oral anticoagulant therapy are at increased risk for further recurrent strokes or how ongoing secondary prevention should be managed. Methods: We conducted an individual patient data pooled analysis of 7 prospective cohort studies that recruited patients with AF and recent cerebral ischemia. We compared patients taking oral anticoagulants (vitamin K antagonists [VKA] or direct oral anticoagulants [DOAC]) prior to index event (OACprior ) with those without prior oral anticoagulation (OACnaive ). We further compared those who changed the type (ie, from VKA or DOAC, vice versa, or DOAC to DOAC) of anticoagulation (OACchanged ) with those who continued the same anticoagulation as secondary prevention (OACunchanged ). Time to recurrent acute ischemic stroke (AIS) was analyzed using multivariate competing risk Fine-Gray models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). Results: We included 5,413 patients (median age = 78 years [interquartile range (IQR) = 71-84 years]; 5,136 [96.7%] had ischemic stroke as the index event, median National Institutes of Health Stroke Scale on admission = 6 [IQR = 2-12]). The median CHA2 DS2 -Vasc score (congestive heart failure, hypertension, age≄ 75 years, diabetes mellitus, stroke/transient ischemic attack, vascular disease, age 65-74 years, sex category) was 5 (IQR = 4-6) and was similar for OACprior (n = 1,195) and OACnaive (n = 4,119, p = 0.103). During 6,128 patient-years of follow-up, 289 patients had AIS (4.7% per year, 95% CI = 4.2-5.3%). OACprior was associated with an increased risk of AIS (HR = 1.6, 95% CI = 1.2-2.3, p = 0.005). OACchanged (n = 307) was not associated with decreased risk of AIS (HR = 1.2, 95% CI = 0.7-2.1, p = 0.415) compared with OACunchanged (n = 585). Interpretation: Patients with AF who have an ischemic stroke despite previous oral anticoagulation are at a higher risk for recurrent ischemic stroke despite a CHA2 DS2 -Vasc score similar to those without prior oral anticoagulation. Better prevention strategies are needed for this high-risk patient group

    Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA

    Full text link
    Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.

    Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first submission - omitted bibliograph
    • 

    corecore