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A Radon diffraction theorem for plane wave ultrasound imaging

Hans-Martin Schwaba) and Richard Lopata
Department for Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612AZ, Netherlands

ABSTRACT:
The rising demand on high frame rate ultrasound imaging applications necessitates the development of fast

algorithms for plane wave image reconstruction. We introduce a new class of plane wave reconstructions that relies

on a relation between receive data and image data in the Radon domain. This relation is derived for arbitrary

dimensions and validated on multiple two-dimensional plane wave data sets. We further present a mathematical rela-

tion between conventional delay-and-sum and Fourier domain reconstruction methods and the method proposed.

Our analysis shows that they all rely on the same physical model with slight variations in certain filtering steps and,

therefore, the new Radon domain reconstruction yields similar results as other methods in terms of image quality.

However, we show that our method offers a huge potential to improve computation time by reducing the number of

applied projections and to improve image quality by introducing nonlinear operations in the Radon domain, e.g., for

edge enhancement. As the Radon transform retains both angular and temporal information, the relation also provides

new insights on the fundamentals of plane wave imaging that can be leveraged for optimizing acquisition schemes

or for developing novel compounding strategies in the future. VC 2023 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1121/10.0017245

(Received 25 August 2022; revised 4 January 2023; accepted 26 January 2023; published online 9 February 2023)

[Editor: James F. Lynch] Pages: 1015–1026

I. INTRODUCTION

High frame rate ultrasound imaging, also known as

ultrafast ultrasound imaging, allows for the acquisition of

several thousand frames per second and has therefore signif-

icantly broadened the range of applications for ultrasound

diagnostics. High frame rate acquisitions enable novel imag-

ing modes, especially in fields where fast processes are

imaged, such as encountered in elastography or flow imag-

ing.1 For many applications, plane wave ultrasound imaging

with linear arrays has been shown to be a suitable approach,

providing a simple trade-off between the number of trans-

missions and image quality.2 Plane wave acquisitions allow

for very high acquisition frame rates but, compared to line-

by-line acquisition schemes, are very demanding in terms of

computational load. This is because, for each transmission,

a large image area must be reconstructed instead of a single

line. To translate high frame rate applications from aca-

demic research to a clinical practice, while maintaining the

paramount real-time feedback capability of ultrasound, fast

algorithms for image reconstruction are required. At the

same time, for an efficient acquisition design, a solid under-

standing of how the choice of transmission angles influences

the image quality is crucial. We, therefore, propose a new

physical model for the mathematical description of plane

wave acquisitions that leads to a fast, highly parallelizable

reconstruction algorithm, provides insights on how image

information of different transmit angles is combined during

compounding, and can be used for edge enhancement to

increase image quality at high frame rates. In the scope of

this contribution, we classify common plane wave recon-

struction methods as either delay-and-sum (DAS) based

algorithms or Fourier domain (FD) algorithms before we

introduce a new class of Radon domain (RD) algorithms.

DAS based methods have in common that the underly-

ing scatter model assumes the scatterer distribution to be

composed of a set of point scatterers, which, when excited

by an incoming plane wave, create a circular wave field,

resulting in a hyperbola-shaped response in the temporal-

spatial receive data [see Fig. 1(a)]. Besides pure DAS meth-

ods,2,3 many other beamforming approaches rely on the

same wave propagation model. This is the case, for exam-

ple, for most adaptive beamformers, such as delay-multiply-

and-sum methods,4 short-lag-spatial-coherence methods,5 or

convolutional beamforming methods.6 While the general

DAS algorithm can be applied for all kinds of transmitted

wave fronts, some related publications explicitly focus on

plane wave acquisitions.7,8

In contrast, FD based methods have in common that the

underlying scatter model assumes the scatterer distribution

to be composed of a set of (plane wave) exponential func-

tions that oscillate monofrequently in one direction and are

constant in all perpendicular directions. When these scatter-

ers are excited by an incoming plane wave, the scattered

wave field is a monofrequent plane wave, and the respective

measurement on a linear array is, again, a (plane wave)

exponential function under a different angle [see Fig. 1(b)].

FD based methods include general statements of the Fouriera)Electronic mail: h.schwab@tue.nl
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diffraction theorem;9,10 filtered backpropagation,11 where

one of the Fourier transforms is performed on a non-

equidistant grid; Fourier slice imaging,12 which defines the

two-dimensional (2D) frequency grid in polar coordinates;

and Stolt’s migration,13 which relies on an approximation of

the underlying mapping law.

The method proposed in this contribution relies on a

scatter model that assumes the scatterer distribution to be

composed of filtered lines at a certain depth and under a cer-

tain angle. When these line scatterers are excited by an

incoming plane wave, they reflect a broadband plane wave.

When this broadband plane wave is measured on a linear

array transducer, it creates the response of a line in the

receive data under a different angle [see Fig. 1(c)]. In Secs.

II–IV, the relation between measurement and scatterer distri-

bution in the RD is derived, the performance is compared to

DAS and FD methods, and the impact of possible operations

in the RD on the image quality is demonstrated. Similar to

the spatial FD, which is often related to as “k-space,” we

abbreviate the RD as “r-space” in the remainder of this paper.

II. THE DIFFRACTION THEOREM

In the following, we derive a RD relation between the

scatterer distribution and plane wave receive data. The

Radon transform is a linear mapping that transforms a signal

defined on spatial coordinates ðrÞ to a signal defined on

radial/angular coordinates ðq;HÞ. We define the Radon

transform pair as

R pðrÞ
� �

ðq;HÞ ¼
ð

Rn
pðrÞdðr � eH � qÞdr :¼ p̂ðq;HÞ; (1)

R�1 p̂ðq;HÞ
� �

ðrÞ ¼
ð

R

ð
S

p̂ðq;HÞhðr � eH � qÞdHdq; (2)

where
Ð

SdH is a weighted surface integral and matches

ð1=2pÞ
Ð p

0
dh in two dimensions (Ref. 14, p. 194) and

�ð1=8p2Þ
Ð 2p

0
d/
Ð p=2

�p=2
dh sin ðhÞ in three dimensions (Ref. 14,

p. 328). The function h is the filter function of the filtered back

projection and equals hðqÞ ¼ @qHdðqÞ in two dimensions and

hðqÞ ¼ @2
qdðqÞ in three dimensions, with H being the Hilbert

transform operator. The angle vector H matches h for two

dimensions and ðh;/Þ in three dimensions, such that the unity

vector eH is eH ¼ ðeð1ÞH ; e
ð2Þ
H Þ ¼ ðsin ðhÞ; cos ðhÞÞ in two

dimensions and eH ¼ ðeð1ÞH ; e
ð2Þ
H ; e

ð3Þ
H Þ ¼ ðsin ðhÞ sin ð/Þ;

sin ðhÞ cos ð/Þ; cos ðhÞÞ in three dimensions, while � denotes a

scalar product. For the sake of compactness, we express the

time t in terms of a travel-time equivalent distance s :¼ tc0

with the background speed-of-sound c0.

In Secs. II A–II C, we derive a mapping law between

the arguments of the measurement in the RD p̂mðqm;HmÞ

FIG. 1. (Color online) Illustration of

wave field decompositions with the

incoming plane wave indicated in dark

blue, the single scatterer component in

purple, and the scattered wave field in

light blue. (a) DAS model for a single

point scatterer; (b) FD model for a sin-

gle monofrequent plane wave scatterer;

(c) RD model for a single broadband

plane wave scatterer.
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and the arguments of the scatterer distribution in the RD

ĉðqc;HcÞ. Using this relation, a plane wave reconstruction

can be performed by a Radon transform of the receive

data, followed by an interpolation using the mapping law

derived below [see Eqs. (23) and (24)] and the inverse

Radon transform. This procedure is depicted in Fig. 2 for

the 2D case. A mathematically correct solution also

includes the application of a filter function before or after

the mapping. The impact of this filter will be assessed in

Sec. IV B.

A. A broadband plane wave decomposition

The theorem is based on a decomposition of the wave

field into broadband plane waves. In the following, we

consider the pressure field pðr; sÞ in an n-dimensional

space r 2 Rn. All equations hold for n> 1. As a prelimi-

nary consideration, we transform the n-dimensional homo-

geneous, isotropic wave equation (Ref. 15, p. 58) into the

RD,

R ðD� @2
s Þpðr; sÞ

� �
¼ 0; (3)

ð
Rn
ðD� @2

s Þpðr; sÞ
� �

dðr � eH � qÞdr ¼ 0; (4)

ð
Rn

pðr; sÞðeH � eHÞ@2
qdðr � eH � qÞdr

�
ð

Rn
@2

s pðr; sÞdðr � eH � qÞdr ¼ 0; (5)

ð@2
q � @2

s Þp̂ðq;H; sÞ ¼ 0; (6)

where we defined @2 as second order derivative operator and

further used eH � eH ¼ 1. It can immediately be noticed that,

in any dimension n> 1, the pressure can be expressed as a

collection of one-dimensional (1D) wave propagations into

different directions H. The relation in (6) is the 1D wave

equation, which is generally solved by p̂ðq;H; sÞ
¼ p̂ðq6s;HÞ (Ref. 16, p. 4) Hence, any free-field wave

propagation can be reduced to a shift of all its Radon coeffi-

cients in the radial direction. It also follows that the outgo-

ing free-field Green function in the RD is not a function of

H and matches the 1D Green function in the spatial domain

(Ref. 16, p. 12),

ĝðq;H; sÞ ¼ 1

2
rðs� jqjÞ; (7)

¼
0; s < 0

1

2
rðs� qÞrðsþ qÞ; s � 0;

8<
: (8)

where rðnÞ is the Heaviside distribution. By applying an

inverse Radon transform to ĝ, we can now express the outgoing

(retarded) free-field Green function in space as a decomposition

into broadband plane waves gðr; sÞ :¼ R�1ĝðq; sÞ,

gðr; sÞ ¼ 1

2

ð
R

ð
S

rðs� jqjÞhðr � eH � qÞdqdH

¼ 1

2

ð
S

hdðs� jr � eHjÞdH; (9)

where h is a filter operator and resembles a convolution with

h without one derivative. Using the definition of h and the

hull integral in the respective dimensions, we can write the

outgoing free-field Green function as gðr; sÞ ¼ ð1=4pÞ
�
Ð p

0
Hsdðs� jr � ehjÞdh in two dimensions with Hs signify-

ing the Hilbert transform with respect to s and as gðr; sÞ
¼ �ð1=16p2Þ

Ð p=2

�p=2
sin ðhÞ

Ð 2p
0

d0ðs� jr � eh/jÞd/dh in three

dimensions with d0 being the first order derivative of the

delta distribution. Using this, any wave field that is

expressed by means of Green functions can be expressed as

a linear combination of broadband plane waves. Apart from

the purpose of deriving a reconstruction method, this might

also be useful for fast wave field simulations, where the

number of considered angles can be used as tuning parame-

ter between accuracy and computation time.

B. The forward problem

For imaging, however, we are interested in a relation

between the measurement and the scatterer rather than a rela-

tion for the wave field. Therefore, we describe the plane wave

measurement pmðr�; sÞ with r� :¼ ðr1;…; rn�1Þ as the wave

field at the hyperplane rn ¼ 0, which describes a line sensor

in two dimensions and a plane sensor in three dimensions.

Instead of performing a Radon transform only in space, we

now perform a Radon transform with n – 1 spatial dimensions

and one temporal dimension, �pðq;HÞ :¼ Rðr�;sÞ pðr; sÞ
� �

¼
Ð

Rn pðr�; rn; sÞdððr�; sÞ � eh � qÞdr�ds. Applying this to the

homogeneous n-dimensional wave equation can, again, be

FIG. 2. (Color online) Illustration of RD reconstruction algorithm in two dimensions for a transmitted plane wave under the angle ui.
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rewritten in such a way that it is similar to the 1D wave equa-

tion as in (6),

Rðr�;sÞ ðD� @2
s Þpðr; sÞ

� �
¼ 0; (10)

Rðr�;sÞ @2
s �

Xn�1

i¼1

@2
ri

 !
� @2

rn

 !
pðr; sÞ

( )
¼ 0; (11)

w2@2
qm
� @2

rn

� �
�pðqm;Hm; rnÞ ¼ 0; (12)

with qm representing r and rn representing s. The only dif-

ference from (6) is the factor w2 :¼ eðnÞ2m � je�mj
2 ¼ 2eðnÞ2m

�1 in front of the second order derivative operator in qm.

Since this factor is constant in both qm and rn, we find that

�pðqm;Hm; rnÞ ¼ �pðqm6wrn;HÞ solves this differential

equation, and, in analogy to the 1D free-field Green function

in (7), we can formulate

�gðqm;Hm; rnÞ ¼
1

2
r �wrn � qmð Þjrnh0;qmi0 (13)

as a solution for the Green function in the spatiotemporal

RD for rn < 0; which refers to waves traveling into negative

rn direction for qm > 0. This covers all waves received at

times s > 0. There are more solutions to �g, which refer to

waves that propagate away from the sensor or at negative

times (see definitions of retarded and advanced Green func-

tion in Ref. 16, pp. 6–12). These solutions are ignored here,

because they do not play a role in the derivation of the r-

space relation in reflection mode. The Green function will

now be applied in a convolution to calculate the wave field.

Expressing (13) evaluated at the shifted coordinates r � r0

and s� s0 and using the shifting property of the Radon

transform gives

Rðr�;sÞ gðr � r0; s� s0Þ
� �

¼ 1

2
rð�wðrn � r0nÞ � qm þ ðr0�; s0Þ � eHÞ: (14)

This Green function in the spatiotemporal RD is now

applied in the calculation of the scattered wave field after

insonification by a plane wave.

We start with the inhomogeneous wave equation, under

the assumption that the Born approximation is valid, includ-

ing compressibility variations cjðrÞ and mass density varia-

tions cqðrÞ as defined in17

ðD� @2
s Þpoðr; sÞ ¼ �cjðrÞ@2

s piðr; sÞ
þ r � cqðrÞrpiðr; sÞ; (15)

where pi is the incoming (transmitted) wave and po is the out-

going (scattered) wave. Note that this wave equation assumes

a lossless, isotropic propagation medium. According to the def-

inition of the Green function (Ref. 18, p. 59), this differential

equation is solved by poðr; sÞ ¼ �
Ð

R

Ð
Xqðr0; s0ÞgðR; TÞdr0ds0,

where qðr; sÞ is the right hand side of (15), and R :¼ r � r0

and T :¼ s� s0. The spatial integration is defined in the

support region of the source X, which is restricted to rn > 0.

Under the condition that cq vanishes at infinity, we can refor-

mulate this convolution as

poðr; sÞ ¼ þ
ð

R

ð
X
cjðr0Þpiðr0; s0Þ@2

s0gðR; TÞdr0ds0

þ
ð

R

ð
X
cqðr0Þ rr0piðr0; s0Þ

� �
� rr0gðR; TÞð Þdr0ds0; (16)

which is similar to the notation in Ref. 11, where the same

relation is shown in the temporal frequency domain. We

now define an incoming broadband plane wave propagating

into the direction defined by ei as piðr; sÞ ¼ dðr � ei � sÞ.
The amplitude of the plane wave over time and per angle

p̂iðs;HiÞ is neglected for brevity but can easily be convolved

into the final result, since all operations will be linear in s.

By plugging (14) into (17), evaluating the outgoing field at

the sensor hyperplane at rn ¼ 0 to get the measurement data

pmðr�; sÞ ¼
Ð

R
poðr; sÞdðrðnÞÞdrðnÞ, and then transforming

everything into the spatiotemporal RD, we can write

�pmðqm;HmÞ ¼
1

2

ð
R

ð
X
cjðr0Þdðr0 � ei� s0Þ

� @2
s0rðwr0n� qmþ ðr�0; s0Þ � emÞdr0ds0

þ1

2

ð
R

ð
X
cjðr0Þ rr0dðr0 � ei� s0Þ

� �
� rr0rðwr0n� qmþ ðr�0; s0Þ � emÞ
� �

dr0ds0

(17)

¼ 1

2
eðnÞ2m

ð
X
cjðr0Þ

� d0 r0 � ðe�m;wÞ þ eðnÞm ei

� �
� qm

� �
dr0

þ 1

2
ei � ðe�m;wÞeðnÞm

ð
X
cqðr0Þ

� d0 r0 � ðe�m;wÞ þ eðnÞm ei

� �
� qm

� �
dr0:

(18)

Here, we realize the similarity to the Radon transform on

the right hand side terms and introduce the scaling,

s :¼ jðe�m;wÞ þ eðnÞm eij ¼
ffiffiffi
2
p
jeðnÞm j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eo � ei

p
, and the unity

vector, ec :¼ ððe�m;wÞ þ eðnÞm eiÞ=s ¼ ðeo þ eiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2eo � ei

p
,

for which we define the auxiliary unity vector

eo :¼ ðe�m;wÞ=jðe�m;wÞj. In doing so, the argument of the d-

distribution becomes dðsr0 � ec � qmÞ ¼ jsj�1dðr0 � ec � qm=
sÞ, and, hence, the integral matches that of a Radon trans-

form onto a radial coordinate qm that is stretched by s. The

choice of the auxiliary unity vector eo is not completely

arbitrary. In fact, there is a descriptive interpretation of the

direction eo is pointing to, which is the direction of broad-

band plane wave scattered back to the transducer after the

incoming plane wave of direction ei was scattered at a

hyperplane with the normal orientation ec. This relation is

illustrated in Fig. 3 for the 2D case.
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We now define the stretched radial component as

qc :¼ qm=s, and the derivative of the respective d-distribu-

tion becomes @qm ¼ jsj�1@qc. This relation already describes

the mapping law between the radial coordinates of the scat-

terer and the measurement. The mapping law for the angular

coordinate can be expressed in terms of a set of direction

cosines e� ¼ ðeð1Þ;…; eðn�1ÞÞ, better than in terms of a set of

angles H ¼ ðhð1Þ;…; hðn�1ÞÞ, which is common practice

when working with angles in higher dimensions. We there-

fore express the angular arguments of ĉj, ĉq, and �pm by their

respective direction cosines, which can be bijectively con-

verted to the respective angles (Ref. 19, p. 5). After

substituting qc and e�c and some standard algebra, we now

get the final relation between measurement and scatterer in

the RD,

�pmðqm; e
�
mÞ ¼

1

4 1þ eo � eið Þ @qcĉjðqc; e
�
cÞ

þ eo � ei

4 1þ eo � eið Þ @qcĉqðqc; e
�
cÞ; (19)

with the mapping law,

qc ¼
qm

jeðnÞm j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2eo � ei

p ; (20)

e�c ¼
e�o þ e�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2eo � ei

p : (21)

The relation is, again, expressed by means of the helper

unity vector eo for brevity, but it can always be expressed as

a function of em as eo ¼ ðe�m;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� e

ðnÞ
m

2

q
Þ=jeðnÞm j. The relation

holds for s > 0, which can easily be assumed for a plane

wave being transmitted at s ¼ 0. The derivatives in (19) can

be seen as a simple filter term. The relation can be used to

design fast, highly parallel pulse-echo simulations.

However, more importantly, it serves as a basis to formulate

a solution to the inverse problem that can be used for plane

wave reconstruction.

C. The inverse problem

While Eqs. (19)–(21) describe how the measurement

can be constructed from given scatterer distributions, we are

now interested in describing the scatterer distribution as a

function of the receive data. While we can theoretically

think of ways to separate the solution for cq and cj, by solv-

ing multiple transmit angles that are mapped onto �pm at the

same locations with different pre-factors in a linear equation

system, such approaches are challenging,20 especially for

band limited data and imperfect apertures. It is common

practice in ultrasound imaging not to distinguish between

the two quantities, but to solve only for a single scatterer

distribution, which is the compressibility distribution cj, and

to neglect any angle dependent dipole scattering induced by

mass density scatterers cq. Solving (19) for ĉj gives the

inverse solution,

ĉjðqc; e
�
cÞ ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2eo � ei

p

e
ðnÞ
m

ðqm

�1
�pmðq0m; e�mÞdq0m; (22)

with the mapping law,

qm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2eo � ei

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ je�oj

2
q qc; (23)

e�m ¼
e�offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ je�oj
2

q ; (24)

where the helper unity vector eo must now be expressed as a

function of ec and ei as eo ¼ ðec � eiÞ=jec � eij, for which

we used the fact that ec is proportional to eo þ ei and, hence,

eo is proportional to ec � ei, while its magnitude must be 1.

Similar to the derivative in the forward problem (19), here

the integration matches a simple filter process. In conse-

quence, in any dimension, a reconstruction can be per-

formed by simple interpolation in the RD, as, after low-pass

filtering, each point in the RD of the scatterer matches

exactly one point in the RD of the measurement.

1. The solution in two dimensions

In two dimensions, with only one Radon angle, a simple

solution for the angle can be formulated, and we do not need

to express the angle in terms of its direction cosine. The vec-

tor e�c in (22) becomes a scalar and matches sin ðhcÞ; with hc

being the projection angle of the Radon transform of cj,

which is oriented relative to the z axis. The projection angle

of the Radon transform of pm in (22) is defined as hm, and

the angles of the incoming and outgoing wave are defined as

ui and uo, respectively. From the definition of e�o as

e�o ¼ e�m=jeðnÞm j, which becomes sin ðuoÞ ¼ sin ðhmÞ= cos ðhmÞ
in two dimensions, it follows that

FIG. 3. (Color online) Illustration of a plane wave scattering event on a line

scatterer: The incoming plane wave under the angle ui (light blue) is

reflected on the line scatterer characterized by the normal angle hc and

radial distance qc (purple), and the reflected wave is a plane wave propagat-

ing in negative z direction under the angle uo ¼ sin�1ðtan ðhmÞÞ (dark

blue), while the transducer is located at z¼ 0.
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uoðhmÞ ¼ sin�1ðtan ðhmÞÞ: (25)

Likewise, uo can be expressed as a function of hc as

uoðhc;uiÞ ¼ 2hc � ui: (26)

Expressing (22)–(24) in two dimensions, we can use

eo � ei ¼ cos ðuo � uiÞ, which becomes cos ðuo � uiÞ
¼ cos ð2ðhc � uiÞÞ after substituting (26), such that the

term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cos ð2ðhc � uiÞÞ

p
becomes 2 cos ðhc � uiÞ for

jhc � uij < p=2, which is always the case for pulse echo.

Hence, the solution to the inverse problem expressed with-

out the help of the auxiliary function uo reads as

ĉjðqc; hcÞ ¼ 4 cos ðhc � uiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2ð2hc � uiÞ

q
�
ðqm

0

�pmðq0m; hmÞdq0m (27)

with the mapping law

qm ¼
2 cos ðhc � uiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin2ð2hc � uiÞ
q qc; (28)

hm ¼ tan�1ðsin ð2hc � uiÞÞ: (29)

While the entire reconstruction algorithm in two

dimensions is depicted in Fig. 2, the mapping law is explic-

itly illustrated in Fig. 4 for two different plane wave angles.

The mapping law exhibits some general properties of a

plane wave reconstruction. The region mapped from �pm is

always restricted to the interval hm 2 ½�45�; 45��, outside

of which no data are contained, because these regions refer

to evanescent waves. This is because the angle of a plane

wave arriving at the transducer line is limited to

juoj < 90�, which, according to (25), refers to a Radon

angle of jhmj < 45�. We further notice that the measure-

ment data of one plane wave angle ui are always mapped

onto image data in an interval of 90�, which is always cen-

tered around hc ¼ ui, while the angular resolution

decreases the further hc differs from ui. The radial resolu-

tion of the image data also depends on the angle and is,

again, best for hc ¼ ui, while there, the covered radial

interval becomes the smallest.

In the frame of this contribution, the r-space plane wave

reconstruction was implemented using the Fourier slice the-

orem (FST) (Ref. 14, p. 166), which states that a Radon

transform can be performed by a 1D inverse Fourier trans-

form along radial lines of the 2D spectrum of a data set.

Likewise, the inverse Radon transform can be performed by

an inverse 2D Fourier transform applied to radially arranged

1D Fourier transforms of Radon projections. It should be

noted that the inverse Radon transform only has to be per-

formed once for any number of plane wave angles, because

due to the linearity of all operations, compounding can be

applied in the RD prior to the inverse transform.

III. RELATION TO OTHER RECONSTRUCTION
METHODS

In practice, DAS methods rely on an integration over

all sensor elements, while FD methods and RD methods

have a one-on-one relation between data points in the FD or

RD, respectively. However, it can be shown that all three

algorithms rely on the same physical model. In this section,

we present how both FD methods and DAS methods relate

to the proposed RD methods mathematically. These rela-

tions are shown in two dimensions, but the three-

dimensional (3D) relations can be derived in a similar

fashion.

A. Relation to frequency domain methods

A relation in the FD that is similar to the RD relation in

(27) is usually referred to as the Fourier diffraction theorem.

It denotes a relation between the measurement in the 2D FD

pmðks; kxÞ and the scatterer distribution in the 2D FD

cðkz; kxÞ, where ks ¼ xc0 is the wave number, kx is the lat-

eral spatial frequency, and kz is the axial spatial frequency.

The relation reads as11

pm ks; kxð Þ ¼ jk2
s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
s � k2

x

p c ksðei þ eoÞð Þ; (30)

where, like before, ei and eo are unity vectors pointing into

the directions of the incoming (transmitted) and outgoing

(received) waves, while here, the direction of the outgoing

wave is directly connected to the frequency vector ðkx; ksÞ

FIG. 4. (Color online) Illustration of the mapping law. The purple region of �pm in (a) is mapped onto the red area of ĉ in (b) and (c), while the transmitted

plane wave angle is ui ¼ 0� in (b) and ui ¼ 20� in (c).
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by eo ¼ kx=ks;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðkx=ksÞ2

q	 

. The equation states that,

for each temporal frequency, the lateral frequencies of the

receive spectrum are mapped onto a semicircle in the image

spectrum with the radius of the respective wave vector, and

changes of the angle of the incoming wave rotate the center

of that semicircle around the spectrum’s origin. Note that in

Ref. 11, the orientation of the angles is different from the

convention here.

The fact that the FST (Ref. 14, p. 166) states that 2D

Fourier data directly relate to Radon data by a radial inverse

Fourier transform already hints at the existence of a relation

between two quantities in the RD, if a relation in the 2D FD

exists. When we express both pmðkt; kxÞ and cðkz; kxÞ in their

respective polar coordinates as pmðkm; hmÞ and cðkc; hcÞ,
we find that the radial frequency vector of c becomes

kc ¼ jksjjei þ eoj ¼ jksj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cos ðui � uoÞ

p
and that the

respective polar angle becomes hc ¼ /ðei þ eoÞ ¼ ðui

þuoÞ=2. When we then substitute the mapping law between

polar and Cartesian coordinates ks ¼ km cos ðhmÞ and

kx ¼ km sin ðhmÞ into kc; hc and the pre-factor in (30), the

plane wave Fourier relation in polar coordinates reads as

pm km; hmð Þ ¼ jkm cos ðhmÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tan2ðhmÞ

p c kc; hcð Þ (31)

with the mapping law

kc ¼ cos ðhmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cos ðui � uoÞ

p
km; (32)

hc ¼
ui þ uo

2
; (33)

where we remember that uo ¼ sin�1ðtan ðhmÞÞ. This nota-

tion in polar coordinates resembles the reconstruction algo-

rithm referred to as Fourier slice imaging.12 We now apply

an inverse Fourier transform to both sides of (31) using the

Fourier pair km $ qm and perform an integral substitution

of km by kc, as defined in (32), to the right hand side Fourier

integral with dkm ¼ ð1=sÞdkc, where, as before,

s ¼ j cos ðhmÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cos ðui � uoÞ

p
. After the inverse

Fourier transform, the term jkm in the pre-factor becomes a

derivative operator @pm. This leads to

�pm qm; hmð Þ ¼ cos ðhmÞ
2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tan2ðhmÞ

p
� @pmĉ sqm;

ui þ sin�1ðtan ðhmÞÞ
2

	 

:

(34)

Solving this for ĉ and using j cos ðhmÞj=
2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanðhmÞ2

q
¼ cosðhmÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ2cosðuo�uiÞ

p
matches

exactly the RD relation in (27)–(29).

B. Relation to DAS based methods

In a DAS reconstruction, each pixel is reconstructed by

integrating pmðs; xÞ along a hyperbola in x. The shape of the

hyperbola only depends on the distance between pixel and

sensor elements, while an additional constant offset for all

channels is determined by the travel time of the wavefront

to the pixel. For a plane wave measurement, a DAS algo-

rithm is, therefore, usually reported as2

c z; xð Þ ¼
ð

pm r � ei þ j z; x� x0ð Þj; x0
� �

dx0: (35)

An additional delay might be added to the argument of

s to compensate for the time from acquisition start to the

time where the plane wave passes the origin of the coordi-

nate system. This equation relies on geometric consider-

ations rather than on a complex wave model, but a relation

with great resemblance can be derived from the RD relation.

This derivation can be carried out in a similar way, as the fil-

tered back projection can be derived from the FST in com-

puted tomography (Ref. 14, pp. 179–183). By writing down

the complete relation in (22), including the Radon trans-

forms, it becomes clear that the order of the two linear oper-

ations integration and mapping can be switched,

c rð Þ ¼ R�1 HR pmðs; xÞ
� �

ðqm; hmÞ
� �

z; xð Þ (36)

¼
ð ð

pmðs; x0ÞMðr; s; x0Þd s dx0; (37)

with M ¼
Ð Ð

Hdððs; x0Þ � em � qmÞdðr � ec � qcÞdhcdqc and

H being the filter operator, which is further discussed in Sec.

IV B. Substituting the mapping law in (23) and (24) into M,

it can be reduced to an integral of the delta distribution

dððz; x� x0Þ � euo þ ðz; xÞ � eui � sÞ over uo. Due to the fact

that the term ðz; x� x0Þ � euo cannot become greater than

jðz; x� x0Þj for any uo, M equals 0 for all s > r � ei

þjðz; x� x0Þj, because the 0 argument of the delta distribu-

tion is never reached for any uo. This relation exactly

matches the s-argument of pm in (35). Therefore, (37) can

be interpreted as a version of the DAS algorithm in (35) that

is filtered in s, while the filter kernel differs for every recon-

structed pixel location (x, z).

IV. VALIDATION

In this section, basic features of the proposed recon-

struction method are characterized, and its performance is

assessed. In addition, initial feasibility studies for advanced

signal processing methods based on the r-space relation are

conducted with the aim of image enhancement.

A. The number of projection angles

In contrast to FD mapping and DAS, RD beamforming

offers a unique feature, which is the free choice of consid-

ered receive angles. This is because, in a discrete Radon

transform, the number of projection angles can freely be

chosen. Obviously, there is a trade-off between a loss of

information if this number is chosen too small and unneces-

sary computations if the number is too high. In computed

tomography, a suggested angular spacing to ensure correct
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sampling is reported as Dhm � 2Dqm=Dm (Ref. 14, p. 261f)

in radians, where Dm is the diameter of the data set, or larg-

est projection distance, and Dqm is the radial spacing. If we

assume that Dqm matches the temporal spacing Ds, we sug-

gest the number of radial samples Nq ¼ Dm=qm þ 1 to be

chosen as Nq ¼ Nt, which is the number of temporal sam-

ples. This means that the suggested angular spacing

becomes Dhm � 2=Nt. Unlike in computed tomography,

where 180� needs to be covered not to lose any information,

for ultrasound receive data, a range of 90� is sufficient,

because an angle of jhmj > 45� refers to evanescent waves

or, in other words, cannot be received with the aperture,

because uo is restricted to the interval ½�90
�
; 90

� �, which

restricts hm ¼ tan�1ð sin�1ðuoÞÞ to the interval ½�45
�
; 45

� �:
This leads to a suggested number of projection angles of

Nhm ¼
p
2

�
2

Nq
� Nq: (38)

It is, therefore, considered that, as long as both the num-

ber of angular samples and the number of projection angles

are on the order of Nt, no information will be lost. To under-

stand whether this number is actually required, or if ultra-

sound data allow for acceptable image quality for fewer

angles, the spatial resolution and the contrast-noise ratio21

were calculated for an increasing number of projection

angles. The analysis was based on the image of a cyst and a

wire in the PICMUS data set (Ref. 22). To image the

required depth, the number of considered temporal samples

was Nt ¼ 1500, which was also chosen as the number of

radial samples. The results are depicted in Fig. 5 and reveal

that image structures can already be recognized at 50

receive angles. Beyond 150 receive angles, the image

quality does not improve significantly anymore, which is

only 10% of the theoretically required receive angles in

(38). In consequence, the computation time can be vastly

reduced without a loss of image quality by choosing a

smaller number of projection angles and can be even further

reduced if losses in resolution are acceptable. The chosen

number of projection angles is, therefore, a simple parame-

ter to tune the trade-off between computation time and

image quality.

B. The impact of the filter function

The r-space mapping requires two steps, the interpola-

tion described by the mapping law in (28) and (29) and the

filtering described by (27). This section is dedicated to

investigating the impact of the filtering step. The filter con-

sists of an angle dependent weighting and radial convolution

in the form of an integration. Technically, this r-space filter

can be applied either before or after the mapping, depending

on whether it is expressed as a function of hm or as a func-

tion of hc. In (27), the filter is defined after mapping as

Hðhc; qmÞ ¼ 4 cos ðhc � uiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin ð2hc � uiÞ2

q
�
ðqm

0

dq0m: (39)

Since, in ultrasound, receive data are always band lim-

ited, the impact of the integration filter, which has an inverse

linear transfer function, is expected to be minor. To verify

this, the same image was reconstructed with and without

application of the r-space filter function. Figure 6 shows the

difference in a cross-sectional image of the carotid artery

FIG. 5. (Color online) Dependence of

image quality on number of considered

receive (RX) angles—(a) 50 angles,

(b) 150 angles, (c) theoretical mini-

mum 1500 angles, and (d) lateral reso-

lution [quantified by the full width half

maximum (FWHM)]—and contrast-to-

noise ratio as a function of the number

of angles.
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from the PICMUS data set.23 Visually, these differences can

barely be seen. Looking at the RF image, the difference

energy between the two images is at 75.7% of the single

image energy. This error can mostly be explained by the

phase shift induced by the integration filter that is also visi-

ble in the profiles in Fig. 6. Looking at envelope data, the

error reduces to only 1.1% and is, hence, considered to be

negligible.

C. Comparison to other reconstruction methods

As pointed out in Sec. III, the Radon based reconstruc-

tion method relies on a similar physical model as FD based

and DAS based approaches. It can, therefore, be assumed

that differences in image quality are dominated in differences

in implementation and not in the algorithm itself. To show

that our implementation of the r-space reconstruction can

return similar results as DAS and FD based methods, the per-

formance with respect to contrast and resolution was com-

pared using the PICMUS plane wave challenge evaluation

tool.22 All reconstructions were performed with an assumed

speed-of-sound of 1540 m/s. For a fair comparison of the

contrast, the impact of apodization on all three methods is

also evaluated. As has been shown, a binary apodization with

a fixed F-number relates to a restriction of the receive angle

in a FD reconstruction,23 where the receive angle depends on

the frequency vectors by uo ¼ tan�1ðkx=ktÞ. The same con-

cept can be applied to the r-space reconstruction, where the

receive angle can directly be derived from the Radon projec-

tion angle hm as uo ¼ sin�1ðtan ðhmÞÞ. The F-number F in a

DAS reconstruction relates to the maximum receive angle

uðmaxÞ
o as uðmaxÞ

o ¼ tan�1ðF=2Þ. Figure 7 shows the results of

the three reconstruction methods with binary apodization

ðF ¼ 1:75;uðmaxÞ
o ¼ 16�Þ and without apodization

ðF ¼ 0;uðmaxÞ
o ¼ 90�Þ, while the analyzed image consists of

11 compounded plane wave angles.

The axial and lateral resolution were compared as �6

dB width of a wire scatterer at 37 mm depth in the PICMUS

resolution phantom with binary apodization (F¼ 1.75).

Again, the evaluation was acquired for 11 compounded

plane wave angles, as shown in Fig. 8. All results for resolu-

tion and contrast are listed in Table I.

Without apodization (F¼ 0), the contrasts of the FD

and the RD reconstruction are much higher than the DAS

contrast. This can be explained by the fact that both the FD

and RD methods completely neglect evanescent parts

FIG. 6. (Color online) Impact of r-

space filter: image without filter (top

left), image with filter (top right).

Bottom, line profiles at the indicated

location with RF image data (blue) and

envelope image data (purple).

FIG. 7. (Color online) Comparison of the contrast of DAS (left), FD recon-

struction (center), and RD reconstruction (right) using the PICMUS contrast

tool for 11 plane wave angles at the inclusion indicated by the blue circle.
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(juoj > 90�) and, therefore, noise in evanescent parts is

automatically automatically cancelled out. However, this

benefit is strongly reduced as the F-number increases.

Therefore, a general inferiority of DAS cannot be stated.

For both lateral and axial resolution, the results of all meth-

ods are almost identical, while, again, a slight underperfor-

mance of DAS in lateral resolution can be noticed. This

might be associated with limitations of a spline interpolation

used in the PICMUS reference DAS algorithm. All three

algorithms were further assessed in their ability to replicate

accurate speckle that follows a Rayleigh distribution using a

Kolmogrov–Smirnov test.22 In the test, all three algorithms

performed similarly well, obtaining a significance level of

a ¼ 0:05.

D. Operations in the Radon domain

In an inverse Radon transform, each value in the RD is

back-projected onto a filtered line in the image. Due to the

mapping law, each value in the RD representation of the

measurement, hence, corresponds to one line in the recon-

structed image. A strong image edge will, therefore, lead to

a high value at the respective location in the measurement in

r-space. This fact can be exploited for edge enhancement by

applying any operation that amplifies high values or sup-

presses low values in r-space. Figure 9 shows a reconstruc-

tion of the PICMUS in vivo data set, where such an

operation was realized as a simple thresholding operation

that neglects all values in the measurement in r-space that

are lower than �23 dB of the maximum value [Fig. 9(a)].

The comparison to an r-space reconstruction without thresh-

olding exposes an amplification of edges [Figs. 9(b) and

9(c)]. Especially the region labeled by the blue box differs

significantly. The reference image exhibits a peak-signal-to-

noise ratio (PSNR) of 33.1 dB between vessel wall and

upper lumen, where a strong artifact can be noticed at that

location, which is likely a reflection artifact. Applying the

threshold in r-space suppresses this artifact significantly,

leading to a PSNR of 48.1 dB. This implies an artifact sup-

pression of 15.0 dB. In this example, the threshold of

�23 dB was chosen manually, but it might be found auto-

matically by an optimization in the future.

Another interesting and important feature of the method

lies in the fact that applying this threshold leads to the elimi-

nation of most of the values, such that the number of data

points after thresholding is only 9% of the data points con-

tained in the original receive data before the Radon trans-

form. Hence, the image in Fig. 9(b) requires only 9% of the

FIG. 8. (Color online) Comparison of the spatial resolution of DAS (left),

FD reconstruction (center), and RD reconstruction (right) using the

PICMUS resolution and distortion tool for 11 plane wave angles at the wire

indicated by the blue circle.

TABLE I. Comparison of reconstruction methods in terms of image quality

measures contrast and resolution; all values are for 11 compounded plane

wave angles and were evaluated at the locations indicated in Figs. 7 and 8.

F¼ 0
F¼ 1.75

Contrast

(dB)

Contrast

(dB)

Axial resolution

(mm)

Lateral resolution

(mm)

DAS 5.2 10.9 0.57 0.51

FD 8.8 10.3 0.56 0.49

RD 8.5 10.4 0.56 0.48

FIG. 9. (Color online) Effect of thresholding in r-space: (a) RD receive data for one receive angle after all values below �23 dB (red mask) were removed,

(b) image compounded from 75 receive angles after thresholding in r-space, and (c) reference image without thresholding.
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receive data compared to the one in Fig. 9(c), while the

image content is maintained or even enhanced in certain

regions. This fact offers the potential for data compression

in the RD, which might be applied to raw data before beam-

forming to reduce the amount of data.

V. DISCUSSION AND CONCLUSION

In this contribution, we introduced a novel class of plane

wave ultrasound reconstructions, which is based on a map-

ping law between receive data and image data in the RD. The

proposed algorithm is currently restricted to plane wave mea-

surements with linear arrays, but other acquisition types

might be converted into these in future studies. This could

imply an additional mapping of receive data that syntheti-

cally generates plane wave data and then continues with the

method as it is proposed here. Just like the other direct recon-

struction approaches (DAS and FD), the underlying wave

model of our proposed method does not consider an attenuat-

ing medium. It can be assumed that a depth dependent attenu-

ation is already partially corrected for using the time variable

gain amplifier in ultrasound hardware (Ref. 15, p. 116).

The fact that the proposed method was shown to be

based on the same mathematical model as DAS and FD

models indicates that differences in performance of these

methods might mainly rely on differences in the accuracy of

implementation. Differences in the models caused by sim-

plifications in the derivation only lead to different filters that

are applied to the data, while, at the same time, it was shown

in Sec. IV B that the impact of the filter function on the

envelope image was in the range of 1% and can, therefore,

be considered negligible in most applications. The hypothe-

sis of comparable performance of the different methods was

supported by a comparison of contrast and resolution, where

all methods yield similar results, especially if apodization

with a fixed F-number is applied.

Huge performance differences, however, might be

achieved in terms of computation time.

In terms of computational complexity, DAS has been

reported to be OðNtN
2
e Þ, while FD methods have been

reported to be OðNtNe log ðNtNeÞÞ, with Nt being the number

of temporal samples and Ne being the number of channels.13

In the same line of argumentation, the complexity of RDT

would be dominated by the Radon transform and would,

therefore, equal OðNtN
2
e Þ, just like DAS.24 However, many

efficient solvers for a fast Radon transform have been pro-

posed,24,25 which offer a great potential compared to DAS

based methods. Furthermore, directly computing only the

line integrals of Radon coefficients that are required for the

image grid can make the mapping step obsolete. The latter

approach would resemble the concept of a filtered backpro-

pagation that has been formulated for FD methods.11

Compared to FD methods, the limitation of projection

angles without a loss in image quality, as pointed out in Sec.

IV A, might imply a major computational advantage. Also,

while the Fourier transform requires a weighted integration

of the data set over all dimensions, the Radon transform

only computes unweighted projections over n � 1 dimen-

sions, which, especially for 3D imaging, can improve com-

putation time significantly. The fact that the RD mapping

law allows for a 1D interpolation instead of a 2D/3D inter-

polation can also result in faster implementations compared

to FD methods. It should be mentioned that comparisons of

computation times were not conducted in this research, as

this highly depends on implementation and hardware, and

should be investigated in an independent study.

In principle, different reconstruction methods offer the

potential for different additional processing steps. While

DAS based methods can be easily modified to contain addi-

tional temporal and spatial processing steps, and Fourier

based methods can be easily modified to contain directional

and frequency-related processing steps, our proposed RD

method exhibits the potential to be modified for directional,

temporal, and, to a certain degree, spatial processing steps.

The directional information could, for example, be lever-

aged for a straightforward integration of medium anisotropy

into the model. Further, the fact that each entry in r-space

relates to a line in the image might be of importance, as lines

or edges, respectively, are understood to be a key factor in

visual perception,26 and structures in band limited images

that do not contain absolute gray values are intrinsically

constructed of edges rather than areas of constant intensity

anyway. This fact has been exploited for edge enhancement

and data compression in Sec. IV D. Certainly, the example

image of a carotid artery in longitudinal view is strongly

dominated by long edges, which might not represent the

majority of ultrasound images in general, but still, high val-

ues in r-space can be expected for other kinds of coherent

object boundaries, while noise and speckle will always

exhibit an oscillating behavior along projections and will

therefore always result in small values in r-space.

It should be mentioned that applying operations in r-

space does not necessarily require a reconstruction in r-

space, since the Radon transform might as well be applied

to image data in post-processing. However, here, we applied

the nonlinear operations before the mapping, which cannot

directly be accounted for in post-processing. Also, applying

this step during reconstruction can cause a great reduction

of computational effort, since only values above the thresh-

old need to be mapped to image data. This could also be lev-

eraged to develop fast methods for data compression of

receive data for fast data transfer or efficient data storage.

More importantly, approaches for compressed sensing could

utilize the sparseness of ultrasound data in r-space, for

example, to achieve similar image quality with a reduced

number of plane waves. This idea is supported by the fact

that Jansen et al. showed that optimized compounding

weights in the RD always lead to a sparsification.27 In a sim-

ilar fashion, deep learning based beamforming approaches

might benefit from a representation of data in r-space, where

the number of nodes of intermediate layers, for example, in

u-nets, could be reduced due to sparsity of ultrasound data.

This reveals new insights of how coherent compound-

ing of different plane wave angles affects the image quality
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in terms of angular coverage and directional resolution,

which might be used to find optimum choices of plane wave

angles or novel strategies for compounding in the future.

In summary, an ultrasound reconstruction class was

introduced that offers new possibilities for fast implementa-

tion and advanced image quality improvement. Future work

will comprise fast hardware accelerated implementations,

optimizations of the choice on transmit and receive angles,

improved apodization and compounding approaches, and a

deeper investigation of compressed sensing methods.
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