740 research outputs found
Implementation of interconnect simulation tools in spice
Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages
Agriculture Multiband Experiment Radiometer
Agriculture Multiband Experiment Radiometer (Amber) was designed and built in 1979 to 1980 and deployed in 1981. Amber was designed to simultaneously measure sunlight reflected from vegetation in 15 optical bands. In 1982, program interest shifted from ground truth to satellite image reduction and Amber was retired. Early in 1987, the project scientists concluded that Amber, because of its 15 simple and independent optical systems, would be ideally suited to study polarized light. Changes were made to add polarimeter capability to the instrument. The changes are listed and briefly discussed
Recommended from our members
Circulating Biomarkers to Identify Responders in Cardiac Cell therapy.
Bone marrow mononuclear cell (BM-MNC) therapy in ST-elevation acute myocardial infarction (STEMI) has no biological inclusion criteria. Here, we analyzed 63 biomarkers and cytokines in baseline plasma samples from 77 STEMI patients treated with BM-MNCs in the TIME and Late-TIME trials as well as 61 STEMI patients treated with placebo. Response to cell therapy was defined by changes in left ventricular ejection fraction, systolic/diastolic volumes, and wall motion indexes. We investigated the clinical value of circulating proteins in outcome prediction using significance testing, partial least squares discriminant analysis, and receiver operating characteristic (ROC) analysis. Responders had higher biomarker levels (76-94% elevated) than non-responders. Several biomarkers had values that differed significantly (P < 0.05) between responders and non-responders including stem cell factor, platelet-derived growth factor, and interleukin-15. We then used these lead candidates for ROC analysis and found multiple biomarkers with values areas under the curve >0.70 including interleukin 15. These biomarkers were not involved in the placebo-treated subjects suggesting that they may have predictive power. We conclude that plasma profiling after STEMI may help identify patients with a greater likelihood of response to cell-based treatment. Prospective trials are needed to assess the predictive value of the circulating biomarkers
New generation hole transporting materials for Perovskite solar cells: Amide-based small-molecules with nonconjugated backbones
State-of-the-art perovskite-based solar cells employ expensive, organic hole transporting materials (HTMs) such as Spiro-OMeTAD that, in turn, limits the commercialization of this promising technology. Herein an HTM (EDOT-Amide-TPA) is reported in which a functional amide-based backbone is introduced, which allows this material to be synthesized in a simple condensation reaction with an estimated cost of <$5 g−1. When employed in perovskite solar cells, EDOT-Amide-TPA demonstrates stabilized power conversion efficiencies up to 20.0% and reproducibly outperforms Spiro-OMeTAD in direct comparisons. Time resolved microwave conductivity measurements indicate that the observed improvement originates from a faster hole injection rate from the perovskite to EDOT-Amide-TPA. Additionally, the devices exhibit an improved lifetime, which is assigned to the coordination of the amide bond to the Li-additive, offering a novel strategy to hamper the migration of additives. It is shown that, despite the lack of a conjugated backbone, the amide-based HTM can outperform state-of-the-art HTMs at a fraction of the cost, thereby providing a novel set of design strategies to develop new, low-cost HTMs
Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases
<p>Abstract</p> <p>Background</p> <p>Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases.</p> <p>Methods</p> <p>sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. <it>In vitro </it>studies were performed to investigate which factors regulate sCD14 release and mCD14 expression.</p> <p>Results</p> <p>sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. <it>In vitro</it>, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition.</p> <p>Conclusions</p> <p>This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.</p
Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases
<p>Abstract</p> <p>Background</p> <p>Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases.</p> <p>Methods</p> <p>sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. <it>In vitro </it>studies were performed to investigate which factors regulate sCD14 release and mCD14 expression.</p> <p>Results</p> <p>sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. <it>In vitro</it>, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition.</p> <p>Conclusions</p> <p>This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.</p
Could it be advantageous to tune the temperature controller during radiofrequency ablation? A feasibility study using theoretical models
Purpose: To assess whether tailoring the Kp and Ki values of a proportional-integral (PI) controller during radiofrequency (RF) cardiac ablation could be advantageous from the point of view of the dynamic behaviour of the controller, in particular, whether control action could be speeded up and larger lesions obtained.
Methods: Theoretical models were built and solved by the finite element method. RF cardiac ablations were simulated with temperature controlled at 55 degrees C. Specific PI controllers were implemented with Kp and Ki parameters adapted to cases with different tissue values (specific heat, thermal conductivity and electrical conductivity) electrode-tissue contact characteristics (insertion depth, cooling effect of circulating blood) and electrode characteristics (size, location and arrangement of the temperature sensor in the electrode).
Results: The lesion dimensions and T(max) remained almost unchanged when the specific PI controller was used instead of one tuned for the standard case: T(max) varied less than 1.9 degrees C, lesion width less than 0.2 mm, and lesion depth less than 0.3 mm. As expected, we did observe a direct logical relationship between the response time of each controller and the transient value of electrode temperature.
Conclusion: The results suggest that a PI controller designed for a standard case (such as that described in this study), could offer benefits under different tissue conditions, electrode-tissue contact, and electrode characteristics.This work received financial support from the Spanish 'Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion' Grant no. TEC2008-01369/TEC and FEDER Project MTM2010-14909. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain. The authors alone are responsible for the content and writing of the paperAlba Martínez, J.; Trujillo Guillen, M.; Blasco Giménez, RM.; Berjano Zanón, E. (2011). Could it be advantageous to tune the temperature controller during radiofrequency ablation? A feasibility study using theoretical models. International Journal of Hyperthermia. 27(6):539-548. https://doi.org/10.3109/02656736.2011.586665S539548276Gaita, F., Caponi, D., Pianelli, M., Scaglione, M., Toso, E., Cesarani, F., … Leclercq, J. F. (2010). Radiofrequency Catheter Ablation of Atrial Fibrillation: A Cause of Silent Thromboembolism? Circulation, 122(17), 1667-1673. doi:10.1161/circulationaha.110.937953Anfinsen, O.-G., Aass, H., Kongsgaard, E., Foerster, A., Scott, H., & Amlie, J. P. (1999). Journal of Interventional Cardiac Electrophysiology, 3(4), 343-351. doi:10.1023/a:1009840004782PETERSEN, H. H., CHEN, X., PIETERSEN, A., SVENDSEN, J. H., & HAUNSO, S. (2000). Tissue Temperatures and Lesion Size During Irrigated Tip Catheter Radiofrequency Ablation: An In Vitro Comparison of Temperature-Controlled Irrigated Tip Ablation, Power-Controlled Irrigated Tip Ablation, and Standard Temperature-Controlled Ablation. Pacing and Clinical Electrophysiology, 23(1), 8-17. doi:10.1111/j.1540-8159.2000.tb00644.xTungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754Lai, Y.-C., Choy, Y. B., Haemmerich, D., Vorperian, V. R., & Webster, J. G. (2004). Lesion Size Estimator of Cardiac Radiofrequency Ablation at Different Common Locations With Different Tip Temperatures. IEEE Transactions on Biomedical Engineering, 51(10), 1859-1864. doi:10.1109/tbme.2004.831529Jain, M. K., & Wolf, P. D. (1999). Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Transactions on Biomedical Engineering, 46(12), 1405-1412. doi:10.1109/10.804568Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., & Webster, J. G. (1995). Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 42(9), 879-890. doi:10.1109/10.412649Hong Cao, Vorperian, V. R., Tungjitkusolmun, S., Jan-Zern Tsai, Haemmerich, D., Young Bin Choy, & Webster, J. G. (2001). Flow effect on lesion formation in RF cardiac catheter ablation. IEEE Transactions on Biomedical Engineering, 48(4), 425-433. doi:10.1109/10.915708Tungjitkusolmun, S., Vorperian, V. R., Bhavaraju, N., Cao, H., Tsai, J.-Z., & Webster, J. G. (2001). Guidelines for predicting lesion size at common endocardial locations during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 48(2), 194-201. doi:10.1109/10.909640Schutt, D., Berjano, E. J., & Haemmerich, D. (2009). Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study. International Journal of Hyperthermia, 25(2), 99-107. doi:10.1080/02656730802563051Langberg, J. J., Calkins, H., el-Atassi, R., Borganelli, M., Leon, A., Kalbfleisch, S. J., & Morady, F. (1992). Temperature monitoring during radiofrequency catheter ablation of accessory pathways. Circulation, 86(5), 1469-1474. doi:10.1161/01.cir.86.5.1469Calkins, H., Prystowsky, E., Carlson, M., Klein, L. S., Saul, J. P., & Gillette, P. (1994). Temperature monitoring during radiofrequency catheter ablation procedures using closed loop control. Atakr Multicenter Investigators Group. Circulation, 90(3), 1279-1286. doi:10.1161/01.cir.90.3.1279Lennox CD, Temperature controlled RF coagulation. Patent number: 5.122.137 Hudson NHEdwards SD, Stern RA, Electrode and associated system using thermally insulated temperature sensing elements. Patent number: US Patent 5,456,682Panescu D, Fleischman SD, Whayne JG, Swanson DK, (EP Technology. Effects of temperature sensor placement on performance of temperature-controlled ablation. IEEE 17th Annual Conference, Engineering in Medicine and Biology Society, Montreal, Canada (1995)BLOUIN, L. T., MARCUS, F. I., & LAMPE, L. (1991). Assessment of Effects of a Radiofrequency Energy Field and Thermistor Location in an Electrode Catheter on the Accuracy of Temperature Measurement. Pacing and Clinical Electrophysiology, 14(5), 807-813. doi:10.1111/j.1540-8159.1991.tb04111.xBerjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24Bhavaraju, N. C., Cao, H., Yuan, D. Y., Valvano, J. W., & Webster, J. G. (2001). Measurement of directional thermal properties of biomaterials. IEEE Transactions on Biomedical Engineering, 48(2), 261-267. doi:10.1109/10.909647Hong Cao, Tungjitkusolmun, S., Young Bin Choy, Jang-Zern Tsai, Vorperian, V. R., & Webster, J. G. (2002). Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation. IEEE Transactions on Biomedical Engineering, 49(3), 247-253. doi:10.1109/10.983459PETERSEN, H. H., & SVENDSEN, J. H. (2003). Can Lesion Size During Radiofrequency Ablation Be Predicted By the Temperature Rise to a Low Power Test Pulse in Vitro? Pacing and Clinical Electrophysiology, 26(8), 1653-1659. doi:10.1046/j.1460-9592.2003.t01-1-00248.xLANGBERG, J. J., LEE, M. A., CHIN, M. C., & ROSENQVIST, M. (1990). Radiofrequency Catheter Ablation: The Effect of Electrode Size on Lesion Volume In Vivo. Pacing and Clinical Electrophysiology, 13(10), 1242-1248. doi:10.1111/j.1540-8159.1990.tb02022.
Political brand image: an investigation into the operationalisation of the external orientation of David Cameron’s Conservative brand
This paper seeks to address the limited understanding of how to operationalise the external brand image of a political brand. More specifically, this research critically assesses the transfer potential of the six variables of brand image by Bosch, Venter, Han and Boshoff to deconstruct the UK Conservative Party brand from the perspective of young people aged 18–24 years during the 2010 UK General Election campaign. This research demonstrates the applicability of the six variables otherwise known as the ‘brand image framework’ to the political environment. However, the application of the brand image framework in its original conceptualisation proved problematic. Many of the brand image variables were clarified, rearticulated and simplified to address the political context. This refined conceptualisation provided an in-depth understanding of how to investigate the political brand image of David Cameron’s Conservative Party. This study addresses the paucity of research that operationalises external brand image and provides practitioners and academics within and beyond the context of political branding a mechanism to understand the external orientation of brands. This research may also be used by political and non-political brands as a basis to explore external brand image and compare its consistency with internal brand identity
Author Correction: Circulating Biomarkers to Identify Responders in Cardiac Cell therapy.
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper
- …