21 research outputs found

    Test-retest reliability and four-week changes in cardiopulmonary fitness in stroke patients: evaluation using a robotics-assisted tilt table

    Get PDF
    BACKGROUND: Exercise testing devices for evaluating cardiopulmonary fitness in patients with severe disability after stroke are lacking, but we have adapted a robotics-assisted tilt table (RATT) for cardiopulmonary exercise testing (CPET). Using the RATT in a sample of patients after stroke, this study aimed to investigate test-retest reliability and repeatability of CPET and to prospectively investigate changes in cardiopulmonary outcomes over a period of four weeks. METHODS: Stroke patients with all degrees of disability underwent 3 separate CPET sessions: 2 tests at baseline (TB1 and TB2) and 1 test at follow up (TF). TB1 and TB2 were at least 24 h apart. TB2 and TF were 4 weeks apart. A RATT equipped with force sensors in the thigh cuffs, a work rate estimation algorithm and a real-time visual feedback system was used to guide the patients' exercise work rate during CPET. Test-retest reliability and repeatability of CPET variables were analysed using paired t-tests, the intraclass correlation coefficient (ICC), the coefficient of variation (CoV), and Bland and Altman limits of agreement. Changes in cardiopulmonary fitness during four weeks were analysed using paired t-tests. RESULTS: Seventeen sub-acute and chronic stroke patients (age 62.7 ± 10.4 years [mean ± SD]; 8 females) completed the test sessions. The median time post stroke was 350 days. There were 4 severely disabled, 1 moderately disabled and 12 mildly disabled patients. For test-retest, there were no statistically significant differences between TB1 and TB2 for most CPET variables. Peak oxygen uptake, peak heart rate, peak work rate and oxygen uptake at the ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) showed good to excellent test-retest reliability (ICC 0.65-0.94). For all CPET variables, CoV was 4.1-14.5 %. The mean difference was close to zero in most of the CPET variables. There were no significant changes in most cardiopulmonary performance parameters during the 4-week period (TB2 vs TF). CONCLUSIONS: These findings provide the first evidence of test-retest reliability and repeatability of the principal CPET variables using the novel RATT system and testing methodology, and high success rates in identification of VAT and RCP: good to excellent test-retest reliability and repeatability were found for all submaximal and maximal CPET variables. Reliability and repeatability of the main CPET parameters in stroke patients on the RATT were comparable to previous findings in stroke patients using standard exercise testing devices. The RATT has potential to be used as an alternative exercise testing device in patients who have limitations for use of standard exercise testing devices

    Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke

    Get PDF
    [EN] Background: Virtual and mixed reality systems have been suggested to promote motor recovery after stroke. Basing on the existing evidence on motor learning, we have developed a portable and low-cost mixed reality tabletop system that transforms a conventional table in a virtual environment for upper limb rehabilitation. The system allows intensive and customized training of a wide range of arm, hand, and finger movements and enables interaction with tangible objects, while providing audiovisual feedback of the participants' performance in gamified tasks. This study evaluates the clinical effectiveness and the acceptance of an experimental intervention with the system in chronic stroke survivors. Methods: Thirty individuals with stroke were included in a reversal (A-B-A) study. Phase A consisted of 30 sessions of conventional physical therapy. Phase B consisted of 30 training sessions with the experimental system. Both interventions involved flexion and extension of the elbow, wrist, and fingers, and grasping of different objects. Sessions were 45-min long and were administered three to five days a week. The body structures (Modified Ashworth Scale), functions (Motricity Index, Fugl-Meyer Assessment Scale), activities (Manual Function Test, Wolf Motor Function Test, Box and Blocks Test, Nine Hole Peg Test), and participation (Motor Activity Log) were assessed before and after each phase. Acceptance of the system was also assessed after phase B (System Usability Scale, Intrinsic Motivation Inventory). Results: Significant improvement was detected after the intervention with the system in the activity, both in arm function measured by the Wolf Motor Function Test (p < 0.01) and finger dexterity measured by the Box and Blocks Test (p < 0.01) and the Nine Hole Peg Test (p < 0.01); and participation (p < 0.01), which was maintained to the end of the study. The experimental system was reported as highly usable, enjoyable, and motivating. Conclusions: Our results support the clinical effectiveness of mixed reality interventions that satisfy the motor learning principles for upper limb rehabilitation in chronic stroke survivors. This characteristic, together with the low cost of the system, its portability, and its acceptance could promote the integration of these systems in the clinical practice as an alternative to more expensive systems, such as robotic instruments.The authors wish to thank the staff and patients of the Servicio de Neurorrehabilitación y Daño Cerebral de los Hospitales NISA for their involvement in the study. The authors also wish to thank the staff of LabHuman for their support in this project, especially Francisco Toledo and José Roda for their assistance. This study was funded in part by the Project TEREHA (IDI-20110844) and Project NeuroVR (TIN2013-44741-R) of the Ministerio de Economia y Competitividad of Spain, the Project Consolider-C (SEJ2006-14301/PSIC) of the Ministerio de Educacion y Ciencia of Spain, the "CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII", and the Excellence Research Program PROMETEO of the Conselleria de Educacion of Generalitat Valenciana (2008-157).Colomer Font, C.; Llorens Rodríguez, R.; Noé Sebastián, E.; Alcañiz Raya, ML. (2016). Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. Journal of NeuroEngineering and Rehabilitation. 13:1-10. https://doi.org/10.1186/s12984-016-0153-6S11013Fregni F, Pascual-Leone A. Hand motor recovery after stroke: tuning the orchestra to improve hand motor function. Cogn Behav Neurol. 2006;19(1):21–33.Patten C, Condliffe EG, Dairaghi CA, Lum PS. Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke. J Neuroeng Rehabil. 2013;10:1.Turolla A, Dam M, Ventura L, Tonin P, Agostini M, Zucconi C, et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil. 2013;10:85.Dancause N, Nudo RJ. Shaping plasticity to enhance recovery after injury. Prog Brain Res. 2011;192:273–95.Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. 2004;22(3–5):281–99.Nielsen JB, Willerslev-Olsen M, Christiansen L, Lundbye-Jensen J, Lorentzen J. Science-based neurorehabilitation: recommendations for neurorehabilitation from basic science. J Mot Behav. 2015;47(1):7–17.Shaughnessy M, Resnick BM. Using theory to develop an exercise intervention for patients post stroke. Top Stroke Rehabil. 2009;16(2):140–6.Subramanian SK, Massie CL, Malcolm MP, Levin MF. Does provision of extrinsic feedback result in improved motor learning in the upper limb poststroke? A systematic review of the evidence. Neurorehabil Neural Repair. 2010;24(2):113–24.Arya KN, Verma R, Garg RK, Sharma VP, Agarwal M, Aggarwal GG. Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial. Top Stroke Rehabil. 2012;19(3):193–211.Levin MF, Weiss PL, Keshner EA. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles. Phys Ther. 2015;95(3):415–25.Laver K, George S, Thomas S, Deutsch JE, Crotty M. Cochrane review: virtual reality for stroke rehabilitation. Eur J Phys Rehabil Med. 2012;48(3):523–30.Cameirao MS, Badia SB, Duarte E, Frisoli A, Verschure PF. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 2012;43(10):2720–8.Saposnik G, Levin M, G. Outcome Research Canada Working. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42(5):1380–6.Viau A, Feldman AG, McFadyen BJ, Levin MF. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil. 2004;1(1):11.Thornton M, Marshall S, McComas J, Finestone H, McCormick A, Sveistrup H. Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: perceptions of participants and their caregivers. Brain Inj. 2005;19(12):989–1000.Mazzoleni S, Puzzolante L, Zollo L, Dario P, Posteraro F. Mechanisms of motor recovery in chronic and subacute stroke patients following a robot-aided training. IEEE Trans Haptics. 2014;7(2):175–80.Duff M, Chen Y, Cheng L, Liu SM, Blake P, Wolf SL, et al. Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke. Neurorehabil Neural Repair. 2013;27(4):306–15.Mousavi Hondori, H., M. Khademi, L. Dodakian, A. McKenzie, C.V. Lopes, and S.C. Cramer, Choice of Human-Computer Interaction Mode in Stroke Rehabilitation. Neurorehabil Neural Repair, 2015.Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.Paternostro-Sluga T, Grim-Stieger M, Posch M, Schuhfried O, Vacariu G, Mittermaier C, et al. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J Rehabil Med. 2008;40(8):665–71.Kopp B, Kunkel A, Flor H, Platz T, Rose U, Mauritz KH, et al. The Arm Motor Ability Test: reliability, validity, and sensitivity to change of an instrument for assessing disabilities in activities of daily living. Arch Phys Med Rehabil. 1997;78(6):615–20.Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.Romero M, Sanchez A, Marin C, Navarro MD, Ferri J, Noe E. Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients. Neurologia. 2012;27(4):216–24.Llorens R, Marín C, Ortega M, Alcaniz M, Colomer C, Navarro MD, et al. Upper limb tracking using depth information for rehabilitative tangible tabletop systems, in 9th International Conference on Disability, Virtual Reality & Associated Technologies. Laval, France: The University of Reading; 2012. p. 463–466.Alt Murphy M, Resteghini C, Feys P, Lamers I. An overview of systematic reviews on upper extremity outcome measures after stroke. BMC Neurol. 2015;15:29.Sloan RL, Sinclair E, Thompson J, Taylor S, Pentland B. Inter-rater reliability of the modified Ashworth Scale for spasticity in hemiplegic patients. Int J Rehabil Res. 1992;15(2):158–61.van der Ploeg RJ, Fidler V, Oosterhuis HJ. Hand-held myometry: reference values. J Neurol Neurosurg Psychiatry. 1991;54(3):244–7.Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63(10):1606–10.Miyamoto S, Kondo T, Suzukamo Y, Michimata A, Izumi S. Reliability and validity of the Manual Function Test in patients with stroke. Am J Phys Med Rehabil. 2009;88(3):247–55.Woodbury M, Velozo CA, Thompson PA, Light K, Uswatte G, Taub E, et al. Measurement structure of the Wolf Motor Function Test: implications for motor control theory. Neurorehabil Neural Repair. 2010;24(9):791–801.Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386–91.Oxford Grice K, Vogel KA, Le V, Mitchell A, Muniz S, Vollmer MA. Adult norms for a commercially available Nine Hole Peg Test for finger dexterity. Am J Occup Ther. 2003;57(5):570–3.Hammer AM, Lindmark B. Responsiveness and validity of the Motor Activity Log in patients during the subacute phase after stroke. Disabil Rehabil. 2010;32(14):1184–93.Bullinger HJ, F.-I.f.A.u. Organisation, and U.S.I.f.A.u. Technologiemanagement. Human Aspects in Computing: Design and use of interactive systems and work with terminals. Elsevier; 1991.McAuley E, Duncan T, Tammen VV. Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: a confirmatory factor analysis. Res Q Exerc Sport. 1989;60(1):48–58.Mazzoleni S, Sale P, Tiboni M, Franceschini M, Carrozza MC, Posteraro F. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. Am J Phys Med Rehabil. 2013;92(10 Suppl 2):e26–37.Lin KC, Hsieh YW, Wu CY, Chen CL, Jang Y, Liu JS. Minimal detectable change and clinically important difference of the Wolf Motor Function Test in stroke patients. Neurorehabil Neural Repair. 2009;23(5):429–34.Fu TS, Wu CY, Lin KC, Hsieh CJ, Liu JS, Wang TN, et al. Psychometric comparison of the shortened Fugl-Meyer Assessment and the streamlined Wolf Motor Function Test in stroke rehabilitation. Clin Rehabil. 2012;26(11):1043–7.Hsieh YW, Wu CY, Lin KC, Chang YF, Chen CL, Liu JS. Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke. 2009;40(4):1386–91.van der Lee JH, Beckerman H, Lankhorst GJ, Bouter LM. The responsiveness of the Action Research Arm test and the Fugl-Meyer Assessment scale in chronic stroke patients. J Rehabil Med. 2001;33(3):110–3.Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf Motor Function Test as Outcome Measure for Research in Patients After Stroke. Stroke. 2001;32(7):1635–9.Reinkensmeyer DJ, Wolbrecht ET, Chan V, Chou C, Cramer SC, Bobrow JE. Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke. Am J Phys Med Rehabil. 2012;91(11 Suppl 3):S232–41.Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131(Pt 2):425–37.Sale P, Mazzoleni S, Lombardi V, Galafate D, Massimiani MP, Posteraro F, et al. Recovery of hand function with robot-assisted therapy in acute stroke patients: a randomized-controlled trial. Int J Rehabil Res. 2014;37(3):236–42.Hwang CH, Seong JW, Son DS. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clin Rehabil. 2012;26(8):696–704.Timmermans AA, Seelen HA, Willmann RD, Kingma H. Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J Neuroeng Rehabil. 2009;6:1.Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313–9.Rosati G, Oscari F, Spagnol S, Avanzini F, Masiero S. Effect of task-related continuous auditory feedback during learning of tracking motion exercises. J Neuroeng Rehabil. 2012;9:79.Imam B, Jarus T. Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population. Rehabil Res Pract. 2014;2014:594540.Schuster-Amft C, Henneke A, Hartog-Keisker B, Holper L, Siekierka E, Chevrier E, et al. Intensive virtual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a single case experimental design and fMRI. Disabil Rehabil Assist Technol. 2015;10(5):385–92.Llorens R, Noe E, Colomer C, Alcaniz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418–25. e2.Llorens R, Gil-Gomez JA, Alcaniz M, Colomer C, Noe E. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clin Rehabil. 2015;29(3):7

    Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The literature suggests a beneficial effect of motor imagery (MI) if combined with physical practice, but detailed descriptions of MI training session (MITS) elements and temporal parameters are lacking. The aim of this review was to identify the characteristics of a successful MITS and compare these for different disciplines, MI session types, task focus, age, gender and MI modification during intervention.</p> <p>Methods</p> <p>An extended systematic literature search using 24 databases was performed for five disciplines: Education, Medicine, Music, Psychology and Sports. References that described an MI intervention that focused on motor skills, performance or strength improvement were included. Information describing 17 MITS elements was extracted based on the PETTLEP (physical, environment, timing, task, learning, emotion, perspective) approach. Seven elements describing the MITS temporal parameters were calculated: study duration, intervention duration, MITS duration, total MITS count, MITS per week, MI trials per MITS and total MI training time.</p> <p>Results</p> <p>Both independent reviewers found 96% congruity, which was tested on a random sample of 20% of all references. After selection, 133 studies reporting 141 MI interventions were included. The locations of the MITS and position of the participants during MI were task-specific. Participants received acoustic detailed MI instructions, which were mostly standardised and live. During MI practice, participants kept their eyes closed. MI training was performed from an internal perspective with a kinaesthetic mode. Changes in MI content, duration and dosage were reported in 31 MI interventions. Familiarisation sessions before the start of the MI intervention were mentioned in 17 reports. MI interventions focused with decreasing relevance on motor-, cognitive- and strength-focused tasks. Average study intervention lasted 34 days, with participants practicing MI on average three times per week for 17 minutes, with 34 MI trials. Average total MI time was 178 minutes including 13 MITS. Reporting rate varied between 25.5% and 95.5%.</p> <p>Conclusions</p> <p>MITS elements of successful interventions were individual, supervised and non-directed sessions, added after physical practice. Successful design characteristics were dominant in the Psychology literature, in interventions focusing on motor and strength-related tasks, in interventions with participants aged 20 to 29 years old, and in MI interventions including participants of both genders. Systematic searching of the MI literature was constrained by the lack of a defined MeSH term.</p

    Sensing muscle activities with body-worn sensors

    No full text
    We demonstrate that simple, unobtrusive sensors attached to the lower arm can be used to capture muscle activations during specific hand and arm activities such as grasping. Specifically, we investigate the use of force sensitive resistors and fabric stretch sensors, that can both be easily integrated into clothing. We use the above sensors to detect the contractions of arm muscles. We present and compare the signals that both sensors produce for a set of typical hand actions. We finally argue that they can provide important information for activity recognition. © 2006 IEEE

    Sensing muscle activities with body-worn sensors

    Get PDF
    We demonstrate that simple, unobtrusive sensors attached to the lower arm can be used to capture muscle activations during specific hand and arm activities such as grasping. Specifically, we investigate the use of force sensitive resistors and fabric stretch sensors, that can both be easily integrated into clothing. We use the above sensors to detect the contractions of arm muscles. We present and compare the signals that both sensors produce for a set of typical hand actions. We finally argue that they can provide important information for activity recognition. © 2006 IEEE

    Effects of proprioceptive exercises on pain and function in chronic neck- and low back pain rehabilitation: a systematic literature review

    No full text
    Background: Proprioceptive training (PrT) is popularly applied as preventive or rehabilitative exercise method in various sports and rehabilitation settings. Its effect on pain and function is only poorly evaluated. The aim of this systematic review was to summarise and analyse the existing data on the effects of PrT on pain alleviation and functional restoration in patients with chronic (>= 3 months) neck-or back pain. Methods: Relevant electronic databases were searched from their respective inception to February 2014. Randomised controlled trials comparing PrT with conventional therapies or inactive controls in patients with neck-or low back pain were included. Two review authors independently screened articles and assessed risk of bias (RoB). Data extraction was performed by the first author and crosschecked by a second author. Quality of findings was assessed and rated according to GRADE guidelines. Pain and functional status outcomes were extracted and synthesised qualitatively and quantitatively. Results: In total, 18 studies involving 1380 subjects described interventions related to PrT (years 1994-2013). 6 studies focussed on neck-, 12 on low back pain. Three main directions of PrT were identified: Discriminatory perceptive exercises with somatosensory stimuli to the back (pPrT, n = 2), multimodal exercises on labile surfaces (mPrT, n = 13), or joint repositioning exercise with head-eye coordination (rPrT, n = 3). Comparators entailed usual care, home based training, educational therapy, strengthening, stretching and endurance training, or inactive controls. Quality of studies was low and RoB was deemed moderate to high with a high prevalence of unclear sequence generation and group allocation (>60%). Low quality evidence suggests PrT may be more effective than not intervening at all. Low quality evidence suggests that PrT is no more effective than conventional physiotherapy. Low quality evidence suggests PrT is inferior to educational and behavioural approaches. Conclusions: There are few relevant good quality studies on proprioceptive exercises. A descriptive summary of the evidence suggests that there is no consistent benefit in adding PrT to neck-and low back pain rehabilitation and functional restoration

    Neurotraining (by Verena Schweizer) in combination with occupationbased intervention in adult inpatients in the subacute phase after the first stroke : a feasability study

    No full text
    Englische Fassung des Artikels im gleichen Heft auf den Seiten 217-226Einleitung: Kognitive Defizite sind eine häufige Folge von Schlaganfällen, die sich maßgeblich auf den Alltag und die Teilhabe von Betroffenen auswirken. Trotz hoher Prävalenz und Relevanz ist die Forschungslage heterogen und es fehlt an soliden wissenschaftlichen Untersuchungen. Das Neurotraining nach Verena Schweizer ist als ergotherapeutische Behandlungsmethode im deutschsprachigen Raum weit verbreitet, doch kaum wissenschaftlich evaluiert. Es vereint bei kognitiven Defiziten restitutive und kompensatorische Therapieansätze, die in der Literatur empfohlen werden. Methode: Im Zentrum der Machbarkeitsprüfung stand das Rekrutierungspotenzial, die Einschlusskriterien, die Eignung und Praktikabilität von Assessments und Interventionskombination und das optimale Verhältnis von Neurotraining zu Alltagstraining sowie die Akzeptanz der Therapie. Die Zielgruppe bildeten erwachsene, stationäre Patient:innen in der subakuten Phase nach dem ersten Schlaganfall während ihrer Erstrehabilitation. Es wurde eine monozentrische, einarmige Machbarkeitsstudie durchgeführt. Durch drei verschiedene Fragebögen wurde die Akzeptanz und Machbarkeit anhand einer vierstufigen Likert-Skala erhoben. Ergebnisse: Während sechs Monaten traten 14 geeignete Personen ein, die ausnahmslos für eine Studienteilnahme angefragt wurden. Neun willigten einer Studienteilnahme zu. Die Stichprobe bestand aus fünf männlichen und vier weiblichen Personen mit einem Durchschnittsalter von 68 Jahren. Die Drop-out Quote betrug rund 45 %. Die Machbarkeit ist nicht vollständig gegeben (MW positiv formulierte Fragen 2,88 / MW negativ formulierte Fragen 2,0). Die Studiendauer, die Wahl der Ein- und Ausschlusskriterien, die zeitliche Umsetzbarkeit und die Frequenz von Neurotraining zu Alltagstraining (3 : 1) sowie das kognitive Messinstrument erwiesen sich als nicht optimal. Die Akzeptanz der Studienintervention konnte bestätigt werden (MW positiv formulierte Fragen 3,65 / MW negativ formulierte Fragen 1,57). Keiner der Teilnehmenden brach die Studie aus Unzufriedenheit ab. Die Teilnehmenden erkannten durchgängig den Sinn der Therapie für ihren Alltag und fühlten sich aufgehoben und ernst genommen. Schlussfolgerung: Die Durchführung einer Pilotstudie in einem teilstationären oder ambulanten Setting mit einer Vergleichsgruppe wäre interessant. Eine realistische Planung ist dank der Resultate dieser Studie möglich. Der Ansatz der simultanen Stimulation von Kognition und Motorik durch die haptischen Elemente des Neurotrainings könnte in einer Folgestudie aufgegriffen und im Vergleich mit herkömmlichen kognitiven Therapien ohne motorische Elemente untersucht werden. Auch eine Gegenüberstellung dieses kombinierten Trainings mit rein restitutiv oder rein kompensatorischen Behandlungsansätzen wäre interessant. Die Auswirkungen der Therapiekombination auf die Störungseinsicht bzw. Fähigkeit zur Selbsteinschätzung der Patient:innen müsste genauer untersucht werden
    corecore