169 research outputs found

    The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.The process that leads to the formation of the bright star-forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the (ionized, atomic, molecular, dusty) interstellar medium with star formation tracers (H ii regions, young <10 Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure with a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs, (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations being not special entities but the result of blending of gas arm/spur cross sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated with the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer timescale.S.E.M. and M.Q. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via grant SCHI 536/7-2 as part of the priority program SPP 1573 "ISM-SPP: Physics of the Interstellar Medium." C.L.D. acknowledges funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. J.P. acknowledges support from the CNRS programme Physique et Chimie du Milieu Interstellaire (PCMI). M.Q. acknowledges the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg (IMPRS-HD). S.G.B. thanks support from Spanish grant AYA2012-32295. We acknowledge financial support to the DAGAL network from the People Programme (Marie Curie Actions) of the European Unions Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number PITN-GA-2011-289313. E.S. thanks NRAO for their support and hospitality during her visits in Socorro. E.S. thanks the Kavli Institute for Theoretical Physics for hospitality during the writing of this paper. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain)

    The PdBI Arcsecond Whirlpool Survey (PAWS): Multi-phase cold gas kinematic of M51

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The kinematic complexity and the favorable position of M51 on the sky make this galaxy an ideal target to test different theories of spiral arm dynamics. Taking advantage of the new high-resolution PdBI Arcsecond Whirlpool Survey data, we undertake a detailed kinematic study of M51 to characterize and quantify the origin and nature of the non-circular motions. Using a tilted-ring analysis supported by several other archival data sets, we update the estimation of M51's position angle (P.A. = (173 ± 3)°) and inclination (i = (22 ± 5)°). Harmonic decomposition of the high-resolution (∼40 pc) CO velocity field shows the first kinematic evidence of an m = 3 wave in the inner disk of M51 with a corotation at R CR, m = 3 = 1.1 ± 0.1 kpc and a pattern speed of Ωp, m = 3 ≈ 140 km s -1 kpc-1. This mode seems to be excited by the nuclear bar, while the beat frequencies generated by the coupling between the m = 3 mode and the main spiral structure confirm its density-wave nature. We observe also a signature of an m = 1 mode that is likely responsible for the lopsidedness of M51 at small and large radii. We provide a simple method to estimate the radial variation of the amplitude of the spiral perturbation (V sp) attributed to the different modes. The main spiral arm structure has 〈V sp〉 = 50-70 km s-1, while the streaming velocity associated with the m = 1 and m = 3 modes is, in general, two times lower. Our joint analysis of H I and CO velocity fields at low and high spatial resolution reveals that the atomic and molecular gas phases respond differently to the spiral perturbation due to their different vertical distribution and emission morphology. © 2014. The American Astronomical Society. All rights reserved.We thank our anonymous referee for thoughtful comments that improved the quality of the paper. We thank the IRAM staff for their support during the observations with the Plateau de Bure interferometer and the 30 m telescope. D.C. and A.H. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via grant SCHI 536/5-1 and SCHI 536/7-1 as part of the priority program SPP 1573 “ISM-SPP: Physics of the Interstellar Medium.” C.L.D. acknowledges funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. T.A.T. acknowledges support from NASA grant No. NNX10AD01G. During this work, J.P. was partially funded by the grant ANR-09-BLAN-0231-01 from the French Agence Nationale de la Recherche as part of the SCHISM project (http://schism.ens.fr/). E.S., A.H. and D.C. thank NRAO for their support and hospitality during their visits in Charlottesville. E.S. thanks the Aspen Center for Physics and the NSF grant No. 1066293 for hospitality during the development and writing of this paper. D.C. thanks Glenn van de Ven for the useful discussion and the help with the harmonic decomposition code. S.G.B. acknowledges economic support from Junta de Andalucia grant P08 TIC 03531. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc

    The PdBI Arcsecond Whirlpool Survey (PAWS): Environmental dependence of giant molecular cloud properties in M51

    Get PDF
    This is the final version of the article. Available fromAmerican Astronomical Society / IOP Publishing via the DOI in this recordUsing data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic giant molecular cloud (GMC) catalog to date, containing 1507 individual objects. GMCs in the inner M51 disk account for only 54% of the total 12CO(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that ∼30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power-law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high-mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the 12CO(1-0) emission in molecule-rich environments, such as M51's inner disk. © 2014. The American Astronomical Society. All rights reserved

    Gravitational torques imply molecular gas inflow towards the nucleus of M 51

    Get PDF
    PublishedJournal Article© 2016 ESO.The transport of gas towards the centre of galaxies is critical for black hole feeding and, indirectly, it can control active galactic nucleus (AGN) feedback. We have quantified the molecular gas inflow in the central R< 1 kpc of M 51 to be 1 M⊙/yr, using a new gravitational torque map and the molecular gas traced by the Plateau de Bure Interferometer Arcsecond Whirlpool Survey (PAWS). The nuclear stellar bar is responsible for this gas inflow. We also used torque profiles to estimate the location of dynamical resonances, and the results suggest a corotation for the bar CRbar ∼ 20″, and a corotation for the spiral CRsp ∼ 100″. We demonstrate how important it is to correct 3.6 μm images for dust emission when gravitational torques are to be computed, and we examine further sources of uncertainty. Our observational measurement of gas inflow can be compared with nuclear molecular outflow rates and provide useful constraints for numerical simulations.The authors would like to thank the anonymous referee for a helpful report, as well as Daniela Calzetti, Nick Z. Scoville and Mari Polletta for making the HST/F190N mosaic available to us. We also appreciate valuable comments from Françoise Combes and Sebastian Haan. We acknowledge financial support to the DAGAL network from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007- 2013/ under REA grant agreement number PITN-GA-2011-289313. M.Q. acknowledges the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg (IMPRS-HD). S.G.B. thanks support from Spanish grant AYA2012-32295. J.P. acknowledges support from the CNRS programme “Physique et Chimie du Milieu Interstellaire” (PCMI). M.Q., S.E.M., D.C. and A.H. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via grants SCHI 536/7-2,SCHI 536/5-1, and SCHI 536/7-1 as part of the priority program SPP 1573 “ISM-SPP: Physics of the Interstellar Medium”

    Short GMC lifetimes: an observational estimate with the PdBI Arcsecond Whirlpool Survey (PAWS)

    Get PDF
    PublishedJournal ArticleWe describe and execute a novel approach to observationally estimate the lifetimes of giant molecular clouds (GMCs). We focus on the cloud population between the two main spiral arms in M51 (the inter-arm region) where cloud destruction via shear and star formation feedback dominates over formation processes. By monitoring the change in GMC number densities and properties across the inter-arm, we estimate the lifetime as a fraction of the inter-arm travel time. We find that GMC lifetimes in M51's inter-arm are finite and short, 20-30 Myr. Over most of the region under investigation shear appears to regulate the lifetime. As the shear timescale increases with galactocentric radius, we expect cloud destruction to switch primarily to feedback at larger radii. We identify a transition from shear- to feedback-dominated disruption, finding that shear is more efficient at dispersing clouds, whereas feedback transforms the population, e.g., by fragmenting high-mass clouds into lower mass pieces. Compared to the characteristic timescale for molecular hydrogen in M51, our short lifetimes suggest that gas can remain molecular while clouds disperse and reassemble. We propose that galaxy dynamics regulates the cycling of molecular material from diffuse to bound (and ultimately star-forming) objects, contributing to long observed molecular depletion times in normal disk galaxies. We also speculate that, in extreme environments like elliptical galaxies and concentrated galaxy centers, star formation can be suppressed when the shear timescale is short enough that some clouds will not survive to form stars.We thank the IRAM staff for their support during the observations with the Plateau de Bure interferometer and the 30 m telescope. S.E.M., D.C., and A.H. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via grants SCHI 536/7-2, SCHI 536/5-1, and SCHI 536/7-1 as part of the priority program SPP 1573 “ISM-SPP: Physics of the Interstellar Medium.” C.L.D. acknowledges funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. T.A.T. acknowledges support from NASA grant number NNX10AD01G. J.P. acknowledges support from the CNRS program “Physique et Chimie du Milieu Interstellaire” (PCMI). M.Q. acknowledges financial support to the DAGAL network from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number PITN-GA-2011-289313

    The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients

    Get PDF
    Epithelial ovarian cancer is the leading cause of death among female genital malignancies. Reduced expression of the cell adhesion molecule E-cadherin was previously shown to be associated with adverse prognostic features. The role of the E-cadherin repressor Snail in ovarian cancer progression remains to be elucidated. We analysed formalin-fixed and paraffin-embedded specimens of 48 primary ovarian tumours and corresponding metastases for expression of E-cadherin and Snail by immunohistochemistry. We found a significant correlation between E-cadherin expression in primary cancers and their corresponding metastases (P<0.001). This correlation was found for Snail expression as well (P<0.001). There was a significant (P=0.008) association of reduced E-cadherin expression in primary ovarian cancer with shorter overall survival. Similarly, Snail expression in corresponding metastases (P=0.047) was associated with reduced overall survival of the patients. Additionally, the group of patients showing reduced E-cadherin and increased Snail immunoreactivity in primary tumours and corresponding metastases, respectively, had a significantly higher risk of death (P=0.002 and 0.022, respectively) when compared to the patient group with the reference expression profile E-cadherin positive and Snail negative. Taken together, the results of our study show that the E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients

    A Splice Isoform of DNedd4, DNedd4-Long, Negatively Regulates Neuromuscular Synaptogenesis and Viability in Drosophila

    Get PDF
    Neuromuscular (NM) synaptogenesis is a tightly regulated process. We previously showed that in flies, Drosophila Nedd4 (dNedd4/dNedd4S) is required for proper NM synaptogenesis by promoting endocytosis of commissureless from the muscle surface, a pre-requisite step for muscle innervation. DNedd4 is an E3 ubiquitin ligase comprised of a C2-WW(x3)-Hect domain architecture, which includes several splice isoforms, the most prominent ones are dNedd4-short (dNedd4S) and dNedd4-long (dNedd4Lo).We show here that while dNedd4S is essential for NM synaptogenesis, the dNedd4Lo isoform inhibits this process and causes lethality. Our results reveal that unlike dNedd4S, dNedd4Lo cannot rescue the lethality of dNedd4 null (DNedd4(T121FS)) flies. Moreover, overexpression of UAS-dNedd4Lo specifically in wildtype muscles leads to NM synaptogenesis defects, impaired locomotion and larval lethality. These negative effects of dNedd4Lo are ameliorated by deletion of two regions (N-terminus and Middle region) unique to this isoform, and by inactivating the catalytic activity of dNedd4Lo, suggesting that these unique regions, as well as catalytic activity, are responsible for the inhibitory effects of dNedd4Lo on synaptogenesis. In accord with these findings, we demonstrate by sqRT-PCR an increase in dNedd4S expression relative to the expression of dNedd4Lo during embryonic stages when synaptogenesis takes place.Our studies demonstrate that splice isoforms of the same dNedd4 gene can lead to opposite effects on NM synaptogenesis

    Surface Hardness Impairment of Quorum Sensing and Swarming for Pseudomonas aeruginosa

    Get PDF
    The importance of rhamnolipid to swarming of the bacterium Pseudomonas aeruginosa is well established. It is frequently, but not exclusively, observed that P. aeruginosa swarms in tendril patterns—formation of these tendrils requires rhamnolipid. We were interested to explain the impact of surface changes on P. aeruginosa swarm tendril development. Here we report that P. aeruginosa quorum sensing and rhamnolipid production is impaired when growing on harder semi-solid surfaces. P. aeruginosa wild-type swarms showed huge variation in tendril formation with small deviations to the “standard” swarm agar concentration of 0.5%. These macroscopic differences correlated with microscopic investigation of cells close to the advancing swarm edge using fluorescent gene reporters. Tendril swarms showed significant rhlA-gfp reporter expression right up to the advancing edge of swarming cells while swarms without tendrils (grown on harder agar) showed no rhlA-gfp reporter expression near the advancing edge. This difference in rhamnolipid gene expression can be explained by the necessity of quorum sensing for rhamnolipid production. We provide evidence that harder surfaces seem to limit induction of quorum sensing genes near the advancing swarm edge and these localized effects were sufficient to explain the lack of tendril formation on hard agar. We were unable to artificially stimulate rhamnolipid tendril formation with added acyl-homoserine lactone signals or increasing the carbon nutrients. This suggests that quorum sensing on surfaces is controlled in a manner that is not solely population dependent

    Candidate Glutamatergic Neurons in the Visual System of Drosophila

    Get PDF
    The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L), transmedullary (Tm), transmedullary Y (TmY), Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am), bushy T (T), translobula plate (Tlp), lobula intrinsic (Lcn, Lt, Li), lobula plate tangential (LPTCs) and lobula plate intrinsic (LPi) cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system
    corecore