11 research outputs found

    Lsd1 and Lsd2 Control Programmed Replication Fork Pauses and Imprinting in Fission Yeast

    Get PDF
    In the fission yeast Schizosaccharomyces pombe, a chromosomal imprinting event controls the asymmetric pattern of mating-type switching. The orientation of DNA replication at the mating-type locus is instrumental in this process. However, the factors leading to imprinting are not fully identified and the mechanism is poorly understood. Here, we show that the replication fork pause at the mat1 locus (MPS1), essential for imprint formation, depends on the lysine-specific demethylase Lsd1. We demonstrate that either Lsd1 or Lsd2 amine oxidase activity is required for these processes, working upstream of the imprinting factors Swi1 and Swi3 (homologs of mammalian Timeless and Tipin, respectively). We also show that the Lsd1/2 complex controls the replication fork terminators, within the rDNA repeats. These findings reveal a role for the Lsd1/2 demethylases in controlling polar replication fork progression, imprint formation, and subsequent asymmetric cell divisions

    High-resolution mapping of the X-linked lymphoproliferative syndrome region by FISH on combed DNA

    No full text

    Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study

    No full text
    Tuberculosis-control programmes are compromised by the increased frequency of multidrug-resistant strains of Mycobacterium tuberculosis. We used the polymerase chain reaction (PCR) and single-strand conformation polymorphism (SSCP) analysis techniques to establish the molecular basis of resistance in 37 drug-resistant isolates of M tuberculosis, and correlated these findings with clinical and antibiotic-sensitivity data. Resistance to isoniazid was found in 36 strains, 16 of which were also resistant to ethionamide. Of the 36 isoniazid-resistant strains, 23 had mutations in the katG gene, and 5 of these also had mutations in the inhA gene. A further 5 strains had alterations in the inhA locus without the katG gene being mutated. Rifampicin resistance was less frequent (13 strains) and usually associated with isoniazid resistance (11 of 13 strains). Mutations in the rpoB gene were detected for all these rifampicin-resistant isolates. Mutations in the rpsL and rrs genes, associated with streptomycin resistance, were found in 13 of 25 and 2 of 25 streptomycin-resistant strains, respectively. The same chromosomal mutations, or combinations of mutations, were found in strains displaying single or multidrug resistance, from cases of both primary and secondary resistance, and from patients infected with human immunodeficiency virus. Thus, multidrug resistance is not due to a novel mechanism and tuberculosis chemotherapy is not subject to a new threat

    Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication

    No full text
    Early tumorigenesis is associated with the engagement of the DNA-damage checkpoint response (DDR). Cell proliferation and transformation induced by oncogene activation are restrained by cellular senescence. It is unclear whether DDR activation and oncogene-induced senescence (OIS) are causally linked. Here we show that senescence, triggered by the expression of an activated oncogene (H-RasV12) in normal human cells, is a consequence of the activation of a robust DDR. Experimental inactivation of DDR abrogates OIS and promotes cell transformation. DDR and OIS are established after a hyper-replicative phase occurring immediately after oncogene expression. Senescent cells arrest with partly replicated DNA and with DNA replication origins having fired multiple times. In vivo DNA labelling and molecular DNA combing reveal that oncogene activation leads to augmented numbers of active replicons and to alterations in DNA replication fork progression. We also show that oncogene expression does not trigger a DDR in the absence of DNA replication. Last, we show that oncogene activation is associated with DDR activation in a mouse model in vivo. We propose that OIS results from the enforcement of a DDR triggered by oncogene-induced DNA hyper-replication

    Dynamic molecular combing: stretching the whole human genome for high-resolution studies

    No full text
    DNA in amounts representative of hundreds of eukaryotic genomes was extended on silanized surfaces by dynamic molecular combing. The precise measurement of hybridized DNA probes was achieved directly without requiring normalization. This approach was validated with the high-resolution mapping of cosmid contigs on a yeast artificial chromosome (YAC) within yeast genomic DNA. It was extended to human genomic DNA for precise measurements ranging from 7 to 150 kilobases, of gaps within a contig, and of microdeletions in the tuberous sclerosis 2 gene on patients' DNA. The simplicity, reproducibility, and precision of this approach makes it a powerful tool for a variety of genomic studies

    High-resolution mapping of the X-linked lymphoproliferative syndrome region by FISH on combed DNA.

    No full text
    X-linked lymphoproliferative syndrome is an inherited immunodeficiency for which the responsible gene is currently unknown. Several megabase-sized deleted regions mapping to Xq25 have been identified in XLP patients, and more recently a 130-kb deletion has been reported (Lamartine et al., 1996; Lanyi et al., 1996). To establish a physical map of this deleted region and to identify the XLP gene, two cosmid contigs were established (Lamartine et al., 1996). However, the physical map of this region is still uncompleted and controversial and three points remain unsolved: (1) the centromeric-telomeric orientation of the whole region, (2) the relative orientation of the two contigs, and (3) the size of the gap between the two contigs. To provide a definitive answer to these questions, high-resolution mapping by fluorescence in situ hybridization on combed DNA and molecular approaches were combined to establish the physical map of the XLP region over 600 kb. Our results identified a gap of 150 kb between the two contigs, established the relative orientation of one contig to the other, and determine the centromeric-telomeric orientation of the whole region. Our results show that the order of the marker over this region is: cen.1D10T7-DF83-DXS982.tel
    corecore