615 research outputs found

    Co‐location of the Downdip End of Seismic Coupling and the Continental Shelf Break

    Get PDF
    International audienceAlong subduction margins, the morphology of the near shore domain records the combined action of erosion from ocean waves and permanent tectonic deformation from the convergence of plates. We observe that at subduction margins around the globe, the edge of continental shelves tends to be located above the downdip end of seismic coupling on the megathrust. Coastlines lie farther landward at variable distances. This observation stems from a compilation of well-resolved coseismic and interseismic coupling data sets. The permanent interseismic uplift component of the total tectonic deformation can explain the localization of the shelf break. It contributes a short wave-length gradient in vertical deformation on top of the structural and isostatic deformation of the margin. This places a hinge line between seaward subsidence and landward uplift above the downdip end of high coupling. Landward of the hinge line, rocks are uplifted in the domain of wave-base erosion and a shelf is maintained by the competition of rock uplift and wave erosion. Wave erosion then sets the coastline back from the tectonically meaningful shelf break. We combine a wave erosion model with an elastic deformation model to illustrate how the downdip end of high coupling pins the location of the shelf break. In areas where the shelf is wide, onshore geodetic constraints on seismic coupling are limited and could be advantageously complemented by considering the location of the shelf break. Subduction margin morphology integrates hundreds of seismic cycles and could inform the persistence of seismic coupling patterns through time

    Strong duality in conic linear programming: facial reduction and extended duals

    Full text link
    The facial reduction algorithm of Borwein and Wolkowicz and the extended dual of Ramana provide a strong dual for the conic linear program (P)sup<c,x>AxKb (P) \sup {<c, x> | Ax \leq_K b} in the absence of any constraint qualification. The facial reduction algorithm solves a sequence of auxiliary optimization problems to obtain such a dual. Ramana's dual is applicable when (P) is a semidefinite program (SDP) and is an explicit SDP itself. Ramana, Tuncel, and Wolkowicz showed that these approaches are closely related; in particular, they proved the correctness of Ramana's dual using certificates from a facial reduction algorithm. Here we give a clear and self-contained exposition of facial reduction, of extended duals, and generalize Ramana's dual: -- we state a simple facial reduction algorithm and prove its correctness; and -- building on this algorithm we construct a family of extended duals when KK is a {\em nice} cone. This class of cones includes the semidefinite cone and other important cones.Comment: A previous version of this paper appeared as "A simple derivation of a facial reduction algorithm and extended dual systems", technical report, Columbia University, 2000, available from http://www.unc.edu/~pataki/papers/fr.pdf Jonfest, a conference in honor of Jonathan Borwein's 60th birthday, 201

    Tajik Depression and Greater Pamir Neotectonics From InSAR Rate Maps

    Get PDF
    Using E-W and vertical deformation-rate maps derived from radar interferometric time-series, we analyze the deformation field of an entire orogenic segment, that is, the Tajik depression and its adjoining mountain belts, Tian Shan, Pamir, and Hindu Kush. The data-base consists of 900+ radar scenes acquired over 2.0–4.5 years and global navigation satellite system measurements. The recent, supra-regional kinematics is visualized in an unprecedented spatio-temporal resolution. We confirm the westward collapse of the Pamir-Plateau crust, inverting the Tajik basin into a fold-thrust belt (FTB) with shortening rates decaying westward from ∼15 to 2 mm/yr. Vertical rates in the Hindu Kush likely record slab-dynamic effects, that is, the progressive break-off of the Hindu Kush slab. At least 10 mm/yr of each, uplift and westward motion occur along the western edge of the Pamir Plateau, outlining the crustal-scale ramp along which the Pamir Plateau overrides the Tajik depression. The latter shows a combination of basin-scale tectonics, halokinesis, and seasonal/weather-driven near-surface effects. Abrupt ∼6 mm/yr horizontal-rate changes occur across the kinematically linked dextral Ilyak strike-slip fault, bounding the Tajik FTB to the north, and the Babatag backthrust, the major thrust of the FTB, located far west in the belt. The sharp rate decay across the Ilyak fault indicates a locking depth of ≤1 km. The Hoja Mumin salt fountain is spreading laterally at ≤350 mm/yr. On the first-order, the modern 20–5 and fossil (since ∼12 Ma) 12–8 mm/yr shortening rates across the FTB correspond

    Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G<sub>0</sub>), the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6. Ringer's lactate solution (RLS) has been shown to increase serum TNF-α and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an alternative metabolic fuel to meet the higher energy demand by liver regeneration. Therefore, we tested whether RLS therapy improves liver recovery after APAP overdose.</p> <p>Methods</p> <p>C57BL/6 male mice were intraperitoneally injected with a single dose of APAP (300 mg/kg dissolved in 1 mL sterile saline). Following 2 hrs of APAP challenge, the mice were given 1 mL RLS or Saline treatment every 12 hours for a total of 72 hours.</p> <p>Results</p> <p>72 hrs after APAP challenge, compared to saline-treated group, RLS treatment significantly lowered serum transaminases (ALT/AST) and improved liver recovery seen in histopathology. This beneficial effect was associated with increased hepatic tissue TNF-α concentration, enhanced hepatic NF-κB DNA binding and increased expression of cell cycle protein cyclin D1, three important factors in liver regeneration.</p> <p>Conclusion</p> <p>RLS improves liver recovery from APAP hepatotoxicity.</p

    The Viscous Nonlinear Dynamics of Twist and Writhe

    Get PDF
    Exploiting the "natural" frame of space curves, we formulate an intrinsic dynamics of twisted elastic filaments in viscous fluids. A pair of coupled nonlinear equations describing the temporal evolution of the filament's complex curvature and twist density embodies the dynamic interplay of twist and writhe. These are used to illustrate a novel nonlinear phenomenon: ``geometric untwisting" of open filaments, whereby twisting strains relax through a transient writhing instability without performing axial rotation. This may explain certain experimentally observed motions of fibers of the bacterium B. subtilis [N.H. Mendelson, et al., J. Bacteriol. 177, 7060 (1995)].Comment: 9 pages, 4 figure

    Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges

    Full text link
    A new traceability chain for the derivation of the farad from dc quantum Hall effect has been implemented at INRIM. Main components of the chain are two new coaxial transformer bridges: a resistance ratio bridge, and a quadrature bridge, both operating at 1541 Hz. The bridges are energized and controlled with a polyphase direct-digital-synthesizer, which permits to achieve both main and auxiliary equilibria in an automated way; the bridges and do not include any variable inductive divider or variable impedance box. The relative uncertainty in the realization of the farad, at the level of 1000 pF, is estimated to be 64E-9. A first verification of the realization is given by a comparison with the maintained national capacitance standard, where an agreement between measurements within their relative combined uncertainty of 420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table

    Evidence for the Mitochondrial Lactate Oxidation Complex in Rat Neurons: Demonstration of an Essential Component of Brain Lactate Shuttles

    Get PDF
    To evaluate the presence of components of a putative Intracellular Lactate Shuttle (ILS) in neurons, we attempted to determine if monocarboxylate (e.g. lactate) transporter isoforms (MCT1 and -2) and lactate dehydrogenase (LDH) are coexpressed in neuronal mitochondria of rat brains. Immunohistochemical analyses of rat brain cross-sections showed MCT1, MCT2, and LDH to colocalize with the mitochondrial inner membrane marker cytochrome oxidase (COX) in cortical, hippocampal, and thalamic neurons. Immunoblotting after immunoprecipitation (IP) of mitochondria from brain homogenates supported the histochemical observations by demonstrating that COX coprecipitated MCT1, MCT2, and LDH. Additionally, using primary cultures from rat cortex and hippocampus as well as immunohistochemistry and immunocoprecipitation techniques, we demonstrated that MCT2 and LDH are coexpressed in mitochondria of cultured neurons. These findings can be interpreted to mean that, as in skeletal muscle, neurons contain a mitochondrial lactate oxidation complex (mLOC) that has the potential to facilitate both intracellular and cell-cell lactate shuttles in brain

    Modeling DNA Structure, Elasticity and Deformations at the Base-pair Level

    Full text link
    We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne potential to represent the stacking energy between neighboring base-pairs. The sugar-phosphate backbones are taken into account by semi-rigid harmonic springs with a non-zero spring length. The competition of these two interactions and the introduction of a simple geometrical constraint leads to a stacked right-handed B-DNA-like conformation. The mapping of the presented model to the Marko-Siggia and the Stack-of-Plates model enables us to optimize the free model parameters so as to reproduce the experimentally known observables such as persistence lengths, mean and mean squared base-pair step parameters. For the optimized model parameters we measured the critical force where the transition from B- to S-DNA occurs to be approximately 140pN140{pN}. We observe an overstretched S-DNA conformation with highly inclined bases that partially preserves the stacking of successive base-pairs.Comment: 15 pages, 25 figures. submitted to PR

    Y-Chromosomal Diversity in Lebanon Is Structured by Recent Historical Events

    Get PDF
    Lebanon is an eastern Mediterranean country inhabited by approximately four million people with a wide variety of ethnicities and religions, including Muslim, Christian, and Druze. In the present study, 926 Lebanese men were typed with Y-chromosomal SNP and STR markers, and unusually, male genetic variation within Lebanon was found to be more strongly structured by religious affiliation than by geography. We therefore tested the hypothesis that migrations within historical times could have contributed to this situation. Y-haplogroup J∗(xJ2) was more frequent in the putative Muslim source region (the Arabian Peninsula) than in Lebanon, and it was also more frequent in Lebanese Muslims than in Lebanese non-Muslims. Conversely, haplogroup R1b was more frequent in the putative Christian source region (western Europe) than in Lebanon and was also more frequent in Lebanese Christians than in Lebanese non-Christians. The most common R1b STR-haplotype in Lebanese Christians was otherwise highly specific for western Europe and was unlikely to have reached its current frequency in Lebanese Christians without admixture. We therefore suggest that the Islamic expansion from the Arabian Peninsula beginning in the seventh century CE introduced lineages typical of this area into those who subsequently became Lebanese Muslims, whereas the Crusader activity in the 11th–13th centuries CE introduced western European lineages into Lebanese Christians

    Enterprise Education Competitions: A Theoretically Flawed Intervention?

    Get PDF
    The demand for including enterprise in the education system, at all levels and for all pupils is now a global phenomenon. Within this context, the use of competitions and competitive learning activities is presented as a popular and effective vehicle for learning. The purpose of this chapter is to illustrate how a realist method of enquiry – which utilises theory as the unit of analysis – can shed new light on the assumed and unintended outcomes of enterprise education competitions. The case developed here is that there are inherent flaws in assuming that competitions will ‘work’ in the ways set out in policy and guidance. Some of the most prevalent stated outcomes – that competitions will motivate and reward young people, that they will enable the development of entrepreneurial skills, and that learners will be inspired by their peers – are challenged by theory from psychology and education. The issue at stake is that the expansion of enterprise education policy into primary and secondary education increases the likelihood that more learners will be sheep dipped in competitions, and competitive activities, without a clear recognition of the potential unintended effects. In this chapter, we employ a realist-informed approach to critically evaluate the theoretical basis that underpins the use of competitions and competitive learning activities in school-based enterprise education. We believe that our findings and subsequent recommendations will provide those who promote and practice the use of competitions with a richer, more sophisticated picture of the potential flaws within such activities.Peer reviewedFinal Published versio
    corecore