18 research outputs found

    Multi-ethnic genome-wide association study for atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF

    Linking Soil CO2 Efflux to Individual Trees: Size-Dependent Variation and the Importance of the Birch Effect

    No full text
    Soil CO2 efflux (FCO2) is a major component of the terrestrial carbon (C) cycle but challenges in explaining local variability hamper efforts to link broad-scale fluxes to their biotic drivers. Trees are the dominant C source for forest soils, so linking tree properties to FCO2 could open new avenues to study plant-soil feedbacks and facilitate scaling; furthermore, FCO2 responds dynamically to meteorological conditions, complicating predictions of total FCO2 and forest C balance. We tested for proximity effects of individual Acer saccharum Marsh. trees on FCO2, comparing FCO2 within 1 m of mature stems to background fluxes before and after an intense rainfall event. Wetting significantly increased background FCO2 (6.4 ± 0.3 vs. 8.6 ± 0.6 s.e. μmol CO2 m−2s−1), with a much larger enhancement near tree stems (6.3 ± 0.3 vs. 10.8 ± 0.4 μmol CO2 m−2s−1). FCO2 varied significantly among individual trees and post-rain values increased with tree diameter (with a slope of 0.058 μmol CO2 m−2s−1cm−1). Post-wetting amplification of FCO2 (the ‘Birch effect’) in root zones often results from the improved mobility of labile carbohydrates and further metabolization of recalcitrant organic matter, which may both occur at higher densities near larger trees. Our results indicate that plant-soil feedbacks change through tree ontogeny and provide evidence for a novel link between whole-system carbon fluxes and forest structure

    Linking Soil CO2 Efflux to Individual Trees: Size-Dependent Variation and the Importance of the Birch Effect

    No full text
    Soil CO2 efflux (FCO2) is a major component of the terrestrial carbon (C) cycle but challenges in explaining local variability hamper efforts to link broad-scale fluxes to their biotic drivers. Trees are the dominant C source for forest soils, so linking tree properties to FCO2 could open new avenues to study plant-soil feedbacks and facilitate scaling; furthermore, FCO2 responds dynamically to meteorological conditions, complicating predictions of total FCO2 and forest C balance. We tested for proximity effects of individual Acer saccharum Marsh. trees on FCO2, comparing FCO2 within 1 m of mature stems to background fluxes before and after an intense rainfall event. Wetting significantly increased background FCO2 (6.4 ± 0.3 vs. 8.6 ± 0.6 s.e. μmol CO2 m−2s−1), with a much larger enhancement near tree stems (6.3 ± 0.3 vs. 10.8 ± 0.4 μmol CO2 m−2s−1). FCO2 varied significantly among individual trees and post-rain values increased with tree diameter (with a slope of 0.058 μmol CO2 m−2s−1cm−1). Post-wetting amplification of FCO2 (the ‘Birch effect’) in root zones often results from the improved mobility of labile carbohydrates and further metabolization of recalcitrant organic matter, which may both occur at higher densities near larger trees. Our results indicate that plant-soil feedbacks change through tree ontogeny and provide evidence for a novel link between whole-system carbon fluxes and forest structure

    Biochar amendment and phosphorus fertilization altered forest soil microbial community and native soil organic matter molecular composition

    No full text
    This is an accepted manuscript of a published article.Fertilizer application to nutrient-deficient forest soils may alleviate soil nutrient limitations, but long-term application may be cost-prohibitive and logistically challenging to apply to large areas. Biochar has been proposed as a soil amendment to increase soil carbon storage and may emulate fertilizer application by increasing soil nutrient availability. However, biochar may also stimulate microbial activity, potentially accelerating native soil organic matter (OM) decomposition and altering soil OM molecular composition. Here we compare changes in soil microbial activity and native OM composition in a P-limited temperate hardwood forest in Ontario, Canada 3 years after the amendment of biochar and P fertilizer using a factorial design experiment. Phospholipid fatty acid analysis indicated that fungal activity was stimulated by biochar and biochar + P addition but not P amendment alone, while bacterial activity increased with all treatments. Concentrations of solvent-extractable acyclic and cyclic lipids, base-hydrolyzable cutin and suberin components, and lignin-derived phenols increased with biochar and biochar + P amendment and to a lesser extent with P fertilization. Biomarker ratios indicated soil OM compositional shifts toward greater proportions of cyclic versus acyclic aliphatic lipids and lignin-derived phenol monomers versus dimers with biochar and biochar + P amendment, but not with P fertilization. Solution-state nuclear magnetic resonance analysis of base-extractable soil OM showed increased proportions of aliphatic lipids and lignin and fewer carbohydrates with all treatments. The results suggest that biochar amendment may alleviate nutrient deficiencies in P-limited forest ecosystems. However, biochar altered the soil microbial community structure and shifted the native soil OM composition toward a greater proportion of recalcitrant OM, which may alter soil OM turnover and nutrient cycling rates with long-term biochar amendment

    Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains

    Full text link
    Disentangling the importance of developmental vs. environmental drivers of variation in forest biomass is key to predicting the future of forest carbon sequestration. At coarse scales, forest biomass is likely to vary along major climatic and physiographic gradients. Natural disturbance occurs along these broad biophysical gradients, and depending on their extent, severity and frequency, could either amplify or dampen spatial heterogeneity in forest biomass. Here we evaluate spatial variation in the basal area of late-successional Picea abies (L./Karst.) forests across the Carpathian Mountain Range of central Europe and compare the roles of coarse-scale biophysical gradients and natural disturbances in driving that variation across a hierarchy of scales (landscapes, stands, and plots). We inventoried forest composition and structure, and reconstructed disturbance histories using tree cores collected from 472 plots nested within 30 late-successional stands, spanning the Carpathian Mountains (approximately 4.5 degrees of latitude). We used linear mixed-effects models to compare the effect of disturbance regimes and site conditions on stand basal area at three hierarchical scales. We found that the basal area of late-successional Picea abies forests varied across a range of spatial scales, with climatic drivers being most important at coarse scales and natural disturbances acting as the primary driver of forest heterogeneity at fine scales. For instance, the stand-level basal area varied among landscapes, with the highest values (48-68 m2 ha-1) in the warmer southern Carpathian Mountains, and lower values (37-52 m2 ha-1 on average) in cooler areas of the eastern and western Carpathians. Finer-scale variation was driven by local disturbances (mainly bark beetle and windstorms) and the legacies of disturbances that occurred more than a century ago. Our findings suggest that warming could increase the basal area of northern sites, but potential increasing disturbances could disrupt these environmental responses

    Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains

    Full text link
    Mortality, driven by both climate and disturbance legacies, is a key process shaping forest dynamics. Understanding the mortality patterns in primary forests in theabsence of severe disturbances provides information on background natural dynamics of a given forest type under ongoing climate change. This can thenbecompared to mortality rates in severely-disturbed stands. Using a large number of sample plots along a gradient from low to high disturbance, we examined themortality rates and composition of mortality agents in primary mountain Norway spruce (Picea abies(L.) Karst.) forests on different spatial scales. We evaluated themortality rates and causes of mortality in 28 stands across a large geographical gradient spanning over 1000 km. We resampled (five-year period) 371 plots (16,287living trees) in primary Norway spruce forests along the Carpathian mountain chain. The estimated overall annual mortality rate was within the previously reportedrange of background (ambient) mortality, however, stand-level and plot-level mortality rates varied substantially. Over 18% of plots displayed more than 2% annualmortality and 6% of plots even exceeded 10% per year. Stands in the Western Carpathians showed the highest variability in the mortality rate, with 30% of the standsin this region showing annual mortality rates over 5%. At the plot level, mixed-severity disturbances increased variability of mortality rates within most localities.Overall mortality was evenly distributed among size classes up to 50 cm diameter at breast height (DBH). However, the distributions differ for individual mortalityagents. Mortality modes were classified into six categories (broken crown, broken stem, uprooted, competition, bark beetle/fungi, climatic extremes). Bark beetle (IpstypographusL.) infestation was the most frequent mortality agent in all stands, whereas the influence of competition as a mortality agent varied substantially.Mortality from abiotically-caused physical damage was similar to that from competition, yet the distribution among modes of physical damage (uprooted, crown, orstem breakage) varied. The lack of clear evidence of mortality agents in some locations implies that many tree deaths are caused by a combination of contributingfactors. The results suggest the role of bark beetle as a mortality agent does not equate to severe mortality at large scales. Prevalence of different size classes affectedby individual mortality agents underline the high complexity of the mortality process in primary forests

    Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests

    Full text link
    Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750%2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand\u27s estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events)

    Large‐scale disturbance legacies and the climate sensitivity of primary Picea abies

    No full text
    Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750–2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand\u27s estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events)

    Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests

    No full text
    Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750–2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand\u27s estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events)
    corecore