127 research outputs found

    Biochemical Frequency Control by Synchronisation of Coupled Repressilators: An In Silico Study of Modules for Circadian Clock Systems

    Get PDF
    Exploration of chronobiological systems emerges as a growing research field within bioinformatics focusing on various applications in medicine, agriculture, and material sciences. From a systems biological perspective, the question arises whether biological control systems for regulation of oscillatory signals and their technical counterparts utilise similar mechanisms. If so, modelling approaches and parameterisation adopted from building blocks can help to identify general components for frequency control in circadian clocks along with gaining insight into mechanisms of clock synchronisation to external stimuli like the daily rhythm of sunlight and darkness. Phase-locked loops could be an interesting candidate in this context. Both, biology and engineering, can benefit from a unified view resulting from systems modularisation. In a first experimental study, we analyse a model of coupled repressilators. We demonstrate its ability to synchronise clock signals in a monofrequential manner. Several oscillators initially deviate in phase difference and frequency with respect to explicit reaction and diffusion rates. Accordingly, the duration of the synchronisation process depends on dedicated reaction and diffusion parameters whose settings still lack to be sufficiently captured analytically

    MRI-based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods : Clinical validation study

    Get PDF
    PURPOSE: To introduce a scheme based on a recent technique in computational hemodynamics, known as the lattice Boltzmann methods (LBM), to noninvasively measure pressure gradients in patients with a coarctation of the aorta (CoA). To provide evidence on the accuracy of the proposed scheme, the computed pressure drop values are compared against those obtained using the reference standard method of catheterization. MATERIALS AND METHODS: Pre‐ and posttreatment LBM‐based pressure gradients for 12 patients with CoA were simulated for the time point of peak systole using the open source library OpenLB. Four‐dimensional (4D) flow‐sensitive phase‐contrast MRI at 1.5 Tesla was used to acquire flow and to setup the simulation. The vascular geometry was reconstructed using 3D whole‐heart MRI. Patients underwent pre‐ and postinterventional pressure catheterization as a reference standard. RESULTS: There is a significant linear correlation between the pretreatment catheter pressure drops and those computed based on the LBM simulation, [Formula: see text] , [Formula: see text]. The bias was ‐0.58 ± 4.1 mmHg and was not significant ( [Formula: see text] with a 95% confidence interval (CI) of ‐3.22 to 2.06. For the posttreatment results, the bias was larger and at ‐2.54 ± 3.53 mmHg with a 95% CI of ‐0.17 to ‐4.91 mmHg. CONCLUSION: The results indicate a reasonable agreement between the simulation results and the catheter measurements. LBM‐based computational hemodynamics can be considered as an alternative to more traditional computational fluid dynamics schemes for noninvasive pressure calculations and can assist in diagnosis and therapy planning. Level of Evidence: 3 J. Magn. Reson. Imaging 2017;45:139–146

    Baroreflex Coupling Assessed by Cross-Compression Entropy

    Get PDF
    Estimating interactions between physiological systems is an important challenge in modern biomedical research. Here, we explore a new concept for quantifying information common in two time series by cross-compressibility. Cross-compression entropy (CCE) exploits the ZIP data compression algorithm extended to bivariate data analysis. First, time series are transformed into symbol vectors. Symbols of the target time series are coded by the symbols of the source series. Uncoupled and linearly coupled surrogates were derived from cardiovascular recordings of 36 healthy controls obtained during rest to demonstrate suitability of this method for assessing physiological coupling. CCE at rest was compared to that of isometric handgrip exercise. Finally, spontaneous baroreflex interaction assessed by CCEBRS was compared between 21 patients suffering from acute schizophrenia and 21 matched controls. The CCEBRS of original time series was significantly higher than in uncoupled surrogates in 89% of the subjects and higher than in linearly coupled surrogates in 47% of the subjects. Handgrip exercise led to sympathetic activation and vagal inhibition accompanied by reduced baroreflex sensitivity. CCEBRS decreased from 0.553 ± 0.030 at rest to 0.514 ± 0.035 during exercise (p < 0.001). In acute schizophrenia, heart rate, and blood pressure were elevated. Heart rate variability indicated a change of sympathovagal balance. The CCEBRS of patients with schizophrenia was reduced compared to healthy controls (0.546 ± 0.042 vs. 0.507 ± 0.046, p < 0.01) and revealed a decrease of blood pressure influence on heart rate in patients with schizophrenia. Our results indicate that CCE is suitable for the investigation of linear and non-linear coupling in cardiovascular time series. CCE can quantify causal interactions in short, noisy and non-stationary physiological time series

    An Integrated System for 3D Hip Joint Reconstruction from 2D X-rays: A Preliminary Validation Study

    Get PDF
    The acquisition of conventional X-ray radiographs remains the standard imaging procedure for the diagnosis of hip-related problems. However, recent studies demonstrated the benefit of using three-dimensional (3D) surface models in the clinical routine. 3D surface models of the hip joint are useful for assessing the dynamic range of motion in order to identify possible pathologies such as femoroacetabular impingement. In this paper, we present an integrated system which consists of X-ray radiograph calibration and subsequent 2D/3D hip joint reconstruction for diagnosis and planning of hip-related problems. A mobile phantom with two different sizes of fiducials was developed for X-ray radiograph calibration, which can be robustly detected within the images. On the basis of the calibrated X-ray images, a 3D reconstruction method of the acetabulum was developed and applied together with existing techniques to reconstruct a 3D surface model of the hip joint. X-ray radiographs of dry cadaveric hip bones and one cadaveric specimen with soft tissue were used to prove the robustness of the developed fiducial detection algorithm. Computed tomography scans of the cadaveric bones were used to validate the accuracy of the integrated system. The fiducial detection sensitivity was in the same range for both sizes of fiducials. While the detection sensitivity was 97.96% for the large fiducials, it was 97.62% for the small fiducials. The acetabulum and the proximal femur were reconstructed with a mean surface distance error of 1.06 and 1.01mm, respectively. The results for fiducial detection sensitivity and 3D surface reconstruction demonstrated the capability of the integrated system for 3D hip joint reconstruction from 2D calibrated X-ray radiograph

    Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer

    Get PDF
    Introduction: The purpose of this work was to study the prognostic influence in breast cancer of thioredoxin reductase 1 (TXNRD1) and thioredoxin interacting protein (TXNIP), key players in oxidative stress control that are currently evaluated as possible therapeutic targets. Methods: Analysis of the association of TXNRD1 and TXNIP RNA expression with the metastasis-free interval (MFI) was performed in 788 patients with node-negative breast cancer, consisting of three individual cohorts (Mainz, Rotterdam and Transbig). Correlation with metagenes and conventional clinical parameters (age, pT stage, grading, hormone and ERBB2 status) was explored. MCF-7 cells with a doxycycline-inducible expression of an oncogenic ERBB2 were used to investigate the influence of ERBB2 on TXNRD1 and TXNIP transcription. Results: TXNRD1 was associated with worse MFI in the combined cohort (hazard ratio = 1.955; P < 0.001) as well as in all three individual cohorts. In contrast, TXNIP was associated with better prognosis (hazard ratio = 0.642; P < 0.001) and similar results were obtained in all three subcohorts. Interestingly, patients with ERBB2-status-positive tumors expressed higher levels of TXNRD1. Induction of ERBB2 in MCF-7 cells caused not only an immediate increase in TXNRD1 but also a strong decrease in TXNIP. A subsequent upregulation of TXNIP as cells undergo senescence was accompanied by a strong increase in levels of reactive oxygen species. Conclusions: TXNRD1 and TXNIP are associated with prognosis in breast cancer, and ERBB2 seems to be one of the factors shifting balances of both factors of the redox control system in a prognostic unfavorable manner

    PuraStat in gastrointestinal bleeding: results of a prospective multicentre observational pilot study

    Get PDF
    Background: A recently developed haemostatic peptide gel for endoscopic application has been introduced to improve the management of gastrointestinal bleeding. The aim of this pilot study was to evaluate the feasibility, safety, efficacy and indication profiles of PuraStat in a clinical setting. Methods: In this prospective observational multicentre pilot study, patients with acute non-variceal gastrointestinal bleeding (upper and lower) were included. Primary and secondary application of PuraStat was evaluated. Haemoglobin, prothrombin time, platelets and transfusion behaviour were documented before and after haemostasis. The efficacy of PuraStat was assessed during the procedure, at 3 days and 1 week after application. Results: 111 patients with acute gastrointestinal bleeding were recruited into the study. 70 percent (78/111) of the patients had upper gastrointestinal bleeding and 30% (33/111) had lower gastrointestinal bleeding. After primary application of PuraStat, initial haemostatic success was achieved in 94% of patients (74/79, 95% CI 88-99%), and in 75% of the patients when used as a secondary haemostatic product, following failure of established techniques (24/32, 95% CI 59-91%). The therapeutic success rates (absence of rebleeding) after 3 and 7 days were 91% and 87% after primary use, and 87% and 81% in all study patients. Overall rebleeding rate at 30 day follow-up was 16% (18/111). In the 5 patients who finally required surgery (4.5%), PuraStat allowed temporary haemostasis and stabilisation. Conclusions: PuraStat expanded the therapeutic toolbox available for an effective treatment of gastrointestinal bleeding sources. It could be safely applied and administered without complications as a primary or secondary therapy. PuraStat may additionally serve as a bridge to surgery in order to achieve temporary haemostasis in case of refractory severe bleeding, possibly playing a role in preventing immediate emergency surgery

    Combinatorial Guidance by CCR7 Ligands for T Lymphocytes Migration in Co-Existing Chemokine Fields

    Get PDF
    Chemokines mediate the trafficking and positioning of lymphocytes in lymphoid tissues that is crucial for immune surveillance and immune responses. In particular, a CCR7 ligand, CCL21, plays important roles in recruiting T cells to secondary lymphoid tissues (SLT). Furthermore, CCL21 together with another CCR7 ligand, CCL19, direct the navigation and compartmentation of T cells within SLT. However, the distinct roles of these two chemokines for regulating cell trafficking and positioning are not clear. In this study, we explore the effect of co-existing CCL19 and CCL21 concentration fields on guiding T cell migration. Using microfluidic devices that can configure single and superimposed chemokine fields we show that under physiological gradient conditions, human peripheral blood T cells chemotax to CCL21 but not CCL19. Furthermore, T cells migrate away from the CCL19 gradient in a uniform background of CCL21. This repulsive migratory response is predicted by mathematical modeling based on the competition of CCL19 and CCL21 for CCR7 signaling and the differential ability of the two chemokines for desensitizing CCR7. These results suggest a new combinatorial guiding mechanism by CCL19 and CCL21 for the migration and trafficking of CCR7 expressing leukocytes
    corecore