296 research outputs found
Attractor Solution of Phantom Field
In light of recent study on the dark energy models that manifest an equation
of state , we investigate the cosmological evolution of phantom field in
a specific potential, exponential potential in this paper. The phase plane
analysis show that the there is a late time attractor solution in this model,
which address the similar issues as that of fine tuning problems in
conventional quintessence models. The equation of state is determined by
the attractor solution which is dependent on the parameter in the
potential. We also show that this model is stable for our present observable
universe.Comment: 9 pages, 3 ps figures; typos corrected, references updated, this is
the final version to match the published versio
Energy Scaling of Minimum-Bias Tunes
We propose that the flexibility offered by modern event-generator tuning
tools allows for more than just obtaining "best fits" to a collection of data.
In particular, we argue that the universality of the underlying physics model
can be tested by performing several, mutually independent, optimizations of the
generator parameters in different physical regions. For regions in which these
optimizations return similar and self-consistent parameter values, the model
can be considered universal. Deviations from this behavior can be associated
with a breakdown of the modeling, with the nature of the deviations giving
clues as to the nature of the breakdown. We apply this procedure to study the
energy scaling of a class of minimum-bias models based on multiple parton
interactions (MPI) and pT-ordered showers, implemented in the Pythia 6.4
generator. We find that a parameter controlling the strength of color
reconnections in the final state is the most important source of
non-universality in this model.Comment: 17 pages, 3 figures, 4 table
Finite-temperature Fermi-edge singularity in tunneling studied using random telegraph signals
We show that random telegraph signals in metal-oxide-silicon transistors at
millikelvin temperatures provide a powerful means of investigating tunneling
between a two-dimensional electron gas and a single defect state. The tunneling
rate shows a peak when the defect level lines up with the Fermi energy, in
excellent agreement with theory of the Fermi-edge singularity at finite
temperature. This theory also indicates that defect levels are the origin of
the dissipative two-state systems observed previously in similar devices.Comment: 5 pages, REVTEX, 3 postscript figures included with epsfi
Quantifying the levitation picture of extended states in lattice models
The behavior of extended states is quantitatively analyzed for two
dimensional lattice models. A levitation picture is established for both
white-noise and correlated disorder potentials. In a continuum limit window of
the lattice models we find simple quantitative expressions for the extended
states levitation, suggesting an underlying universal behavior. On the other
hand, these results point out that the Quantum Hall phase diagrams may be
disorder dependent.Comment: 5 pages, submitted to PR
Type IIA Moduli Stabilization
We demonstrate that flux compactifications of type IIA string theory can
classically stabilize all geometric moduli. For a particular orientifold
background, we explicitly construct an infinite family of supersymmetric vacua
with all moduli stabilized at arbitrarily large volume, weak coupling, and
small negative cosmological constant. We obtain these solutions from both
ten-dimensional and four-dimensional perspectives. For more general
backgrounds, we study the equations for supersymmetric vacua coming from the
effective superpotential and show that all geometric moduli can be stabilized
by fluxes. We comment on the resulting picture of statistics on the landscape
of vacua.Comment: 48 pages, 2 figures, LaTeX. v2: references added. v3: minor comments
& references adde
Topological doping and the stability of stripe phases
We analyze the properties of a general Ginzburg-Landau free energy with
competing order parameters, long-range interactions, and global constraints
(e.g., a fixed value of a total ``charge'') to address the physics of stripe
phases in underdoped high-Tc and related materials. For a local free energy
limited to quadratic terms of the gradient expansion, only uniform or
phase-separated configurations are thermodynamically stable. ``Stripe'' or
other non-uniform phases can be stabilized by long-range forces, but can only
have non-topological (in-phase) domain walls where the components of the
antiferromagnetic order parameter never change sign, and the periods of charge
and spin density waves coincide. The antiphase domain walls observed
experimentally require physics on an intermediate lengthscale, and they are
absent from a model that involves only long-distance physics. Dense stripe
phases can be stable even in the absence of long-range forces, but domain walls
always attract at large distances, i.e., there is a ubiquitous tendency to
phase separation at small doping. The implications for the phase diagram of
underdoped cuprates are discussed.Comment: 18 two-column pages, 2 figures, revtex+eps
Plasma matrix metalloproteinases in neonates having surgery for congenital heart disease
During cardiopulmonary-bypass matrix-metalloproteinases released may contribute to ventricular dysfunction. This study was to determine plasma matrix-metalloproteinases in neonates after cardiopulmonary-bypass and their relation to post-operative course. A prospective observational study included 18 neonates having cardiac surgery. Plasma matrix-metalloproteinases-2 and 9 activities were measured by gelatin-zymography pre-operatively, on starting cardiopulmonarybypass, 7–8 min after aortic cross-clamp release, and 1h, 4h, 24h, and 3d after cardiopulmonary-bypass. Plasma concentrations of their tissue inhibitors 1 and 2 were determined by enzyme-linked immunosorbent assay. Cardiac function was assessed by serial echocardiography. Paired t-tests and Wilcoxon tests were used to assess temporal changes, and linear correlation with simultaneous clinical and cardiac function parameters were assessed using Pearson's product-moment correlation coefficient. Plasma matrix-metalloproteinases activities and their tissue inhibitor concentrations decreased during cardiopulmonary-bypass. Matrix-metalloproteinase-2 plasma activity increased progressively starting 1h after cardiopulmonarybypass and returned to pre-operative levels at 24h. Matrix-metalloproteinase-9 plasma activity increased significantly after release of aortic cross-clamp, peaked 7–8min later, and returned to baseline at 24h. Plasma tissueinhibitor 1 and 2 concentrations increased 1h after cardiopulmonary-bypass. Cardiac function improved from 4h to 3d after surgery (p<0.05). There was no evidence of significant correlations between matrix-metalloproteinases or their inhibitors and cardiac function, inotrope scores, organ dysfunction scores, ventilation days, or hospital days. The temporal profile of plasma matrix-metalloproteinases and their inhibitors after cardiopulmonary-bypass in neonates are similar to adults. In neonates, further study should determine whether circulating matrix-metalloproteinases are useful biomarkers of disease activity locally within the myocardium, and hence of clinical outcomes
- …