205 research outputs found

    Beiträge zur Kenntniss nordafrikanischer Hyrnenopteren

    Get PDF
    Adiciones y correccionesPeer reviewe

    Beiträge zur Kenntnis nordafrikanischer Hymenopteren

    Get PDF
    Entre los especialistas de Formicidae (H. Kutter)Peer reviewe

    Assessment of successful incorporation of cages after cervical or lumbar intercorporal fusion with [(18)F]fluoride positron-emission tomography/computed tomography

    Get PDF
    The purpose of this study is to assess the successful incorporation of cages in patients after cervical or lumbar intercorporal fusion with positron-emission tomography/computed tomography (PET/CT). Twenty patients (14 female and 6 male; mean age 58years, age range 38-73years) with 30 cervical (n=13) or lumbar (n=17) intercorporal fusions were prospectively enrolled in this study. Time interval between last intercorporal intervention and PET/CT ranged from 2 to 116months (mean 63; median 77months). IRB approval was obtained for all patients, and written informed consent was obtained from all patients. About 30min prior to PET/CT scanning, 97-217MBq (mean 161MBq) 18F-fluoride were administered intravenously. Patients were imaged in supine position on a combined PET/CT system (Discovery RX/STE, 16/64 slice CT, GE Healthcare). 3D-PET emission data were acquired for 1.5 and 2min/bed position, respectively, and reconstructed by a fully 3D iterative algorithm (VUE Point HD) using low-dose CT data for attenuation correction. A dedicated diagnostic thin-slice CT was optionally acquired covering the fused region. Areas of increased 18F-fluoride uptake around cages were determined by one double-board certified radiologist/nuclear physician and one board certified radiologist in consensus. In 12/20 (60%) patients, increased 18F-fluoride uptake around cages was observed. Of the 30 intercorporal fusions, 15 (50%) showed increased 18F-fluoride uptake. Median time between intervention and PET/CT examination in cages with increased uptake was 37months (2-116months), median time between intervention and PET/CT examination in those cages without increased uptake was 91months (19-112months), p (Wilcoxon)=0.01 (one-sided). 14/29 (48%) cages with a time interval>1year between intervention and PET/CT scan showed an increased uptake. In conclusion, PET/CT frequently shows increased 18F-fluoride uptake in cervical and lumbar cages older than 1year (up to almost 8years in cervical cages and 10years in lumbar cages) possibly indicating unsuccessful fusion due to increased stress/microinstabilit

    Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating

    Get PDF
    AIMS: To determine the feasibility of prospective electrocardiogram (ECG)-gating to achieve low-dose computed tomography coronary angiography (CTCA). METHODS AND RESULTS: Forty-one consecutive patients with suspected (n = 35) or known coronary artery disease (n = 6) underwent 64-slice CTCA using prospective ECG-gating. Individual radiation dose exposure was estimated from the dose-length product. Two independent readers semi-quantitatively assessed the overall image quality on a five-point scale and measured vessel attenuation in each coronary segment. One patient was excluded for atrial fibrillation. Mean effective radiation dose was 2.1 +/- 0.6 mSv (range, 1.1-3.0 mSv). Image quality was inversely related to heart rate (HR) (57.3 +/- 6.2, range 39-66 b.p.m.; r = 0.58, P 63 b.p.m. (P < 0.001). CONCLUSION: This first experience documents the feasibility of prospective ECG-gating for CTCA with diagnostic image quality at a low radiation dose (1.1-3.0 mSv), favouring HR <63 b.p.

    Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating

    Get PDF
    AIMS: To determine the feasibility of prospective electrocardiogram (ECG)-gating to achieve low-dose computed tomography coronary angiography (CTCA). METHODS AND RESULTS: Forty-one consecutive patients with suspected (n = 35) or known coronary artery disease (n = 6) underwent 64-slice CTCA using prospective ECG-gating. Individual radiation dose exposure was estimated from the dose-length product. Two independent readers semi-quantitatively assessed the overall image quality on a five-point scale and measured vessel attenuation in each coronary segment. One patient was excluded for atrial fibrillation. Mean effective radiation dose was 2.1 +/- 0.6 mSv (range, 1.1-3.0 mSv). Image quality was inversely related to heart rate (HR) (57.3 +/- 6.2, range 39-66 b.p.m.; r = 0.58, P 63 b.p.m. (P < 0.001). CONCLUSION: This first experience documents the feasibility of prospective ECG-gating for CTCA with diagnostic image quality at a low radiation dose (1.1-3.0 mSv), favouring HR <63 b.p.

    Coercivity enhancement in exchange biased systems driven by interfacial magnetic frustration

    Get PDF
    We report the temperature and cooling field dependence of the coercivity of exchange biased MnF2/Fe bilayers. When the antiferromagnetic surface is in a state of maximum magnetic frustration and the net exchange bias is zero, we observe a strong enhancement of the coercivity, which is proportional to the exchange coupling between the layers. Hence, the coercivity can be tuned in a reproducible and repeatable fashion in the same sample. We propose that a frustrated interface provides local energy minima which effectively pin the propagating domain walls in the ferromagnet, leading to an enhanced coercivity

    Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation

    Full text link
    PURPOSE: To assess the diagnostic performance of a novel ultrafast cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors for nuclear myocardial perfusion imaging (MPI). METHODS: The study group comprised 75 consecutive patients (55 men, BMI range 19-45 kg/m(2)) who underwent a 1-day (99m)Tc-tetrofosmin adenosine-stress/rest imaging protocol. Scanning was performed first on a conventional dual-detector SPECT gamma camera (Ventri, GE Healthcare) with a 15-min acquisition time each for stress and rest. All scans were immediately repeated on an ultrafast CZT camera (Discovery 530 NMc, GE Healthcare) with a 3-min scan time for stress and a 2-min scan time for rest. Clinical agreement (normal, ischaemia, scar) between CZT and SPECT was assessed for each patient and for each coronary territory using SPECT MPI as the reference standard. Segmental myocardial tracer uptake values (percent of maximum) using a 20-segment model and left ventricular ejection fraction (EF) values obtained using CZT were compared with those obtained using conventional SPECT by intraclass correlation and by calculating Bland-Altman limits of agreement. RESULTS: There was excellent clinical agreement between CZT and conventional SPECT on a per-patient basis (96.0%) and on a per-vessel territory basis (96.4%) as shown by a highly significant correlation between segmental tracer uptake values (r=0.901, p<0.001). Similarly, EF values for both scanners were highly correlated (r=0.976, p<0.001) with narrow Bland-Altman limits of agreement (-5.5-10.6%). CONCLUSION: The novel CZT camera allows a more than fivefold reduction in scan time and provides clinical information equivalent to conventional standard SPECT MPI

    Two-stage magnetization reversal in exchange biased bilayers

    Get PDF
    MnF2/Fe bilayers exhibit asymmetric magnetization reversal that occurs by coherent rotation on one side of the loop and by nucleation and propagation of domain walls on the other side of the loop. Here, we show by polarized neutron reflectometry, magnetization, and magnetotransport measurements that for samples with good crystalline "quality" the rotation is a two-stage process, due to coherent rotation to a stable state perpendicular to the cooling field direction. The result is remarkably asymmetrically shaped hysteresis loops

    Ab initio calculations of partial molar properties in the single-site approximation

    Get PDF
    We discuss the application of the single-site approximation in calculations of partial molar quantities, e.g., impurity solution energy, segregation energy, and effective chemical potential, which are related to a variation of the composition of an alloy or its nonequivalent parts. We demonstrate that these quantities may be considerably in error if they an obtained in methods based on the single-site approximation for fixed alloy compositions. This error does not reflect a breakdown but rather an inappropriate use of the single-site approximation which is, in fact, found to be sufficiently accurate when properly applied in calculations of partial molar quantities
    • …
    corecore