822 research outputs found

    Constraining the structure and formation of the Galactic bulge from a field in its outskirts. FLAMES-GIRAFFE spectra of about 400 red giants around (l,b)=(0{\deg},-10{\deg})

    Full text link
    The presence of two stellar populations in the Milky Way bulge has been reported recently. We aim at studying the abundances and kinematics of stars in the outer bulge, thereby providing additional constraints on models of its formation. Spectra of 401 red giant stars in a field at (l,b)=(0{\deg},-10{\deg}) were obtained with FLAMES at the VLT. Stars of luminosities down to below the two bulge red clumps (RCs) are included. From these spectra we measure general metallicities, abundances of Fe and the alpha-elements, and radial velocities (RV) of the stars. These measurements as well as photometric data are compared to simulations with the Besancon and TRILEGAL models of the Galaxy. We confirm the presence of two populations among our sample stars: i) a metal-rich one at [M/H] ~+0.3, comprising about 30% of the sample, with low RV dispersion and low alpha-abundance, and ii) a metal-poor population at [M/H] ~-0.6 with high RV dispersion and high alpha-abundance. The metal-rich population could be connected to the Galactic bar. We identify this population as the carrier of the double RC feature. We do not find a significant difference in metallicity or RV between the two RCs, a small difference in metallicity being probably due to a selection effect. The RV dispersion agrees well with predictions of the Besancon Galaxy model, but the metallicity of the "thick bulge" model component should be shifted to lower metallicity by 0.2 to 0.3dex to well reproduce the observations. We present evidence that the metallicity distribution function depends on the evolutionary state of the sample stars, suggesting that enhanced mass loss preferentially removes metal-rich stars. We also confirm the decrease of \alpha-element over-abundance with increasing metallicity.Comment: 19 pages (excluding on-line table), 21 figures, accepted for publication in A&

    The Optical Gravitational Lensing Experiment. Is Interstellar Extinction Toward the Galactic Center Anomalous?

    Full text link
    Photometry of the Galactic bulge, collected during the OGLE-II microlensing search, indicates high and non-uniform interstellar extinction toward the observed fields. We use the mean I-band magnitude and V-I color of red clump stars as a tracer of interstellar extinction toward four small regions of the Galactic bulge with highly variable reddening. Similar test is performed for the most reddened region observed in the LMC. We find that the slope of the location of red clump stars in the color-magnitude diagrams (CMDs) in the Galactic bulge is significantly smaller than the slope of the reddening line following the standard extinction law (R_V=3.1) for approximations of the extinction curve by both Cardelli, Clayton and Mathis (1989, CCM89) and Fitzpatrick (1999, F99). The differences are much larger for the CCM89 approximation which, on the other hand, indicates the same slopes for the control field in the LMC, contrary to the F99 approximation. We discuss possible systematic effects that could cause the observed discrepancy. Anomalous extinction toward the Galactic bulge seems to be the most natural explanation. Our data indicate that, generally, the ratio of the total to selective absorption, R_VI, is much smaller toward the Galactic bulge than the value corresponding to the standard extinction curve (R_V=3.1). However, R_VI varies from one line-of-sight to another. Our results explain why the red clump and RR Lyr stars in the Baade's window dereddened with standard value of R_VI are redder compared to those of the local population.Comment: 16 pages. Accepted for publication in ApJ. Major changes include: comparison of the OGLE-II photometry with other data, additional comparison of the observed reddening line with that resulting from approximation of the standard extinction curve by Fitzpatrick (1999

    Detailed Abundances for the Old Population near the Galactic Center: I. Metallicity distribution of the Nuclear Star Cluster

    Get PDF
    We report the first high spectral resolution study of 17 M giants kinematically confirmed to lie within a few parsecs of the Galactic Center, using R=24,000 spectroscopy from Keck/NIRSPEC and a new linelist for the infrared K band. We consider their luminosities and kinematics, which classify these stars as members of the older stellar population and the central cluster. We find a median metallicity of =-0.16 and a large spread from approximately -0.3 to +0.3 (quartiles). We find that the highest metallicities are [Fe/H]<+0.6, with most of the stars being at or below the Solar iron abundance. The abundances and the abundance distribution strongly resembles that of the Galactic bulge rather than disk or halo; in our small sample we find no statistical evidence for a dependence of velocity dispersion on metallicity.Comment: 18 pages, 14 figures, accepted for publication in A

    Evidence against anomalous compositions for giants in the Galactic Nuclear Star Cluster

    Get PDF
    Very strong Sc I lines have been found recently in cool M giants in the Nuclear Star Cluster in the Galactic Center. Interpreting these as anomalously high scandium abundances in the Galactic Center would imply a unique enhancement signature and chemical evolution history for nuclear star clusters, and a potential test for models of chemical enrichment in these objects. We present high resolution K-band spectra (NIRSPEC/Keck II) of cool M giants situated in the solar neighborhood and compare them with spectra of M giants in the Nuclear Star Cluster. We clearly identify strong Sc I lines in our solar neighborhood sample as well as in the Nuclear Star Cluster sample. The strong Sc I lines in M giants are therefore not unique to stars in the Nuclear Star Cluster and we argue that the strong lines are a property of the line formation process that currently escapes accurate theoretical modeling. We further conclude that for giant stars with effective temperatures below approximately 3800 K these Sc I lines should not be used for deriving the scandium abundances in any astrophysical environment until we better understand how these lines are formed. We also discuss the lines of vanadium, titanium, and yttrium identified in the spectra, which demonstrate a similar striking increase in strength below 3500 K effective temperature.Comment: 11 pages, 6 figures, accepted for publication in Ap

    Mapping the Milky Way bulge at high resolution: the 3D dust extinction, CO, and X factor maps

    Full text link
    Three dimensional interstellar extinction maps provide a powerful tool for stellar population analysis. We use data from the VISTA Variables in the Via Lactea survey together with the Besan\c{c}on stellar population synthesis model of the Galaxy to determine interstellar extinction as a function of distance in the Galactic bulge covering 10<l<10 -10 < l < 10 and 10<b<5-10 < b <5. We adopted a recently developed method to calculate the colour excess. First we constructed the H-Ks vs. Ks and J-Ks vs. Ks colour-magnitude diagrams based on the VVV catalogues that matched 2MASS. Then, based on the temperature-colour relation for M giants and the distance-colour relations, we derived the extinction as a function of distance. The observed colours were shifted to match the intrinsic colours in the Besan\c{c}on model as a function of distance iteratively. This created an extinction map with three dimensions: two spatial and one distance dimension along each line of sight towards the bulge. We present a 3D extinction map that covers the whole VVV area with a resolution of 6' x 6', using distance bins of 0.5 kpc. The high resolution and depth of the photometry allows us to derive extinction maps for a range of distances up to 10 kpc and up to 30 magnitudes of extinction in AVA_{V}. Integrated maps show the same dust features and consistent values as other 2D maps. We discuss the spatial distribution of dust features in the line of sight, which suggests that there is much material in front of the Galactic bar, specifically between 5-7 kpc. We compare our dust extinction map with high-resolution 12CO\rm ^{12}CO maps towards the Galactic bulge, where we find a good correlation between 12CO\rm ^{12}CO and AV\rm A_{V}. We determine the X factor by combining the CO map and our dust extinction map. Our derived average value is consistent with the canonical value of the Milky Way.Comment: 11 pages, 18 figures, accepted for publication in Astronomy&Astrophysic

    Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    Full text link
    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12^{12}C/13^{13}C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff3100T_{\rm eff}\approx3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly sub-solar mean metallicity and only few stars with super-solar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O<<1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.Comment: 21 pages, 13 figures, 6 tables (incl. appendix), years of work, published in MNRA

    A three dimensional extinction map of the Galactic Anticentre from multi-band photometry

    Full text link
    We present a three dimensional extinction map in rr band. The map has a spatial angular resolution, depending on latitude, between 3 -- 9\,arcmin and covers the entire XSTPS-GAC survey area of over 6,000\,deg2\rm deg^2 for Galactic longitude 140\rm 140 \leq ll 220deg \leq 220\deg and latitude 40\rm -40\leq bb 40deg \leq 40\deg. By cross-matching the photometric catalog of the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC) with those of 2MASS and WISE, we have built a multi-band photometric stellar sample of about 30 million stars and applied spectral energy distribution (SED) fitting to the sample. By combining photometric data from the optical to the near-infrared, we are able to break the degeneracy between the intrinsic stellar colours and the amounts of extinction by dust grains for stars with high photometric accuracy, and trace the extinction as a function of distance for low Galactic latitude and thus highly extincted regions. This has allowed us to derive the best-fit extinction and distance information of more than 13 million stars, which are used to construct the three dimensional extinction map. We have also applied a Rayleigh-Jeans colour excess (RJCE) method to the data using the 2MASS and WISE colour (HW2)(H-W2). The resulting RJCE extinction map is consistent with the integrated two dimensional map deduced using the best-fit SED algorithm. However for individual stars, the amounts of extinction yielded by the RJCE method suffer from larger errors than those given by the best-fit SED algorithm.Comment: 20 pages, 18 figures, accepted in MNRA

    Abundances of disk and Bulge giants from high-resolution optical spectra III. Sc, V, Cr, Mn, Co, Ni

    Full text link
    Context. Recent observations of the Bulge, e.g., its X-shape, cylindrical stellar motions, and a potential fraction of young stars propose that it formed through secular evolution of the disk and not through gas dissipation and/or mergers, as thought previously. Aims. We measure abundances of six iron-peak elements (Sc, V, Cr, Mn, Co and Ni) in the local thin and thick disks as well as the Bulge to provide additional observational constraints for Galaxy formation and chemical evolution models. Methods. We use high-resolution optical spectra of 291 K giants in the local disk mostly obtained by the FIES at NOT (signal-to-noise (S/N) ratio of 80-100) and 45 K giants in the Bulge obtained by the UVES/FLAMES at VLT (S/N ratio of 10-80). We measure abundances in SME and apply NLTE corrections to the [Mn/Fe] and [Co/Fe] ratios. To discriminate between the thin and thick, we use stellar metallicity, [Ti/Fe]-ratios, and kinematics from Gaia DR2 (proper motions and the radial velocities). Results. The observed disk trend of V is more enhanced in the thick disk, while the Co disk trend shows a minor enhancement in the thick disk. The Bulge trends of V and Co appear even more enhanced w.r.t. the thick disk, but within the uncertainties. The [Ni/Fe] ratio seems slightly overabundant in the thick disk and the Bulge w.r.t. the thin disk, although the difference is minor. The disk and Bulge trends of Sc, Cr and Mn overlap strongly. Conclusions. The somewhat enhanced [(V,Co)/Fe] ratios observed in the Bulge suggest that the local thick disk and the Bulge might have experienced different chemical enrichment and evolutionary paths. However, we are unable to predict the exact evolutionary path of the Bulge solely based on these observations. Galactic chemical evolution models could, on the other hand, provide that using these results.Comment: Accepted for publication in A&A; 25 pages, 15 figure

    Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS II. The complete high resolution extinction map and implications for Bulge studies

    Full text link
    We use the Vista Variables in the Via Lactea (VVV) ESO public survey data to measure extinction values in the complete area of the Galactic bulge covered by the survey at high resolution. We derive reddening values using the method described in Paper I. This is based on measuring the mean (J-Ks) color of red clump giants in small subfields of 2' to 6' in the following bulge area: -10.3<b<+5.1 and -10<l<+10.4. To determine the reddening values E(J-Ks) for each region, we measure the RC color and compare it to the (J-Ks) color of RC stars measured in Baade's window, for which we adopt E(B-V)=0.55. This allows us to construct a reddening map sensitive to small scale variations minimizing the problems arising from differential extinction. The significant reddening variations are clearly observed on spatial scales as small as 2'. We find a good agreement between our extinction measurements and Schlegel maps in the outer bulge, but, as already stated in the literature the Schlegel maps are not reliable for regions within |b| < 6. In the inner regions we compare our results with maps derived from DENIS and Spitzer surveys. While we find good agreement with other studies in the corresponding overlapping regions, our extinction map has better quality due to both higher resolution and a more complete spatial coverage in the Bulge. We investigate the importance of differential reddening and demonstrate the need for high resolution extinction maps for detailed studies of Bulge stellar populations and structure. The extinction variations on scales of up to 2'-6', must be taken into account when analysing the stellar populations of the Bulge.Comment: Accepted for publication in A&

    Explanatory Supplement of the ISOGAL-DENIS Point Source Catalogue

    Get PDF
    We present version 1.0 of the ISOGAL-DENIS Point Source Catalogue (PSC), containing more than 100,000 point sources detected at 7 and/or 15 micron in the ISOGAL survey of the inner Galaxy with the ISOCAM instrument on board the Infrared Space Observatory (ISO). These sources are cross-identified, wherever possible, with near-infrared (0.8-2.2 micron) data from the DENIS survey. The overall surface covered by the ISOGAL survey is about 16 square degrees, mostly (95%) distributed near the Galactic plane (|b| < 1 deg), where the source extraction can become confusion limited and perturbed by the high background emission. Therefore, special care has been taken aimed at limiting the photometric error to ~0.2 magnitude down to a sensitivity limit of typically 10 mJy. The present paper gives a complete description of the entries and the information which can be found in this catalogue, as well as a detailed discussion of the data processing and the quality checks which have been completed. The catalogue is available via the VizieR Service at the Centre de Donn\'ees Astronomiques de Strasbourg (CDS, http://vizier.u-strasbg.fr/viz-bin/VizieR/) and also via the server at the Institut d'Astrophysique de Paris (http://www-isogal.iap.fr/). A more complete version of this paper, including a detailed description of the data processing, is available in electronic form through the ADS service.Comment: 21 pages, 7 figures. A&A in press. Full length version with 32 figures and detailed description of the data processing is available here: http://www-isogal.iap.fr/Publications/ExplSupplFull.ps.g
    corecore