12,847 research outputs found

    Beam-induced backgrounds in the CLIC 3 TeV CM energy interaction region

    Full text link
    Luminosity spectrum and accelerator background levels strongly influence the experimental conditions and have an important impact on detector design. The expected rates of the main beam-beam products at CLIC 3 TeV CM energy, taking into account for machine imperfections, are computed. Among the other machine-induced background the photon fans from the Incoherent Synchrotron Radiation (ISR) photons emitted in the final doublet are evaluated.Comment: Proceedings of LCWS1

    An approach to metal fatigue

    Get PDF
    Cumulative fatigue damage based on investigation of fatigue limit associated with crack, crack propagation rate, and stress interaction cycle in metal

    Regular Incidence Complexes, Polytopes, and C-Groups

    Full text link
    Regular incidence complexes are combinatorial incidence structures generalizing regular convex polytopes, regular complex polytopes, various types of incidence geometries, and many other highly symmetric objects. The special case of abstract regular polytopes has been well-studied. The paper describes the combinatorial structure of a regular incidence complex in terms of a system of distinguished generating subgroups of its automorphism group or a flag-transitive subgroup. Then the groups admitting a flag-transitive action on an incidence complex are characterized as generalized string C-groups. Further, extensions of regular incidence complexes are studied, and certain incidence complexes particularly close to abstract polytopes, called abstract polytope complexes, are investigated.Comment: 24 pages; to appear in "Discrete Geometry and Symmetry", M. Conder, A. Deza, and A. Ivic Weiss (eds), Springe

    Optimal Control for Generating Quantum Gates in Open Dissipative Systems

    Full text link
    Optimal control methods for implementing quantum modules with least amount of relaxative loss are devised to give best approximations to unitary gates under relaxation. The potential gain by optimal control using relaxation parameters against time-optimal control is explored and exemplified in numerical and in algebraic terms: it is the method of choice to govern quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would otherwise drive the system through fast decaying modes. In a standard model system generalising decoherence-free subspaces to more realistic scenarios, openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional benefit it requires control fields orders of magnitude lower than the bang-bang decouplings in the latter.Comment: largely expanded version, superseedes v1: 10 pages, 5 figure

    Visually induced linear vection is enhanced by small physical accelerations

    No full text
    Wong & Frost (1981) showed that the onset latency of visually induced self-rotation illusions (circular vection) can be reduced by concomitant small physical motions (jerks). Here, we tested whether (a) such facilitation also applies for translations, and (b) whether the strength of the jerk (degree of visuo-vestibular cue conflict) matters. 14 naïve observers rated onset, intensity, and convincingness of forward linear vection induced by photorealistic visual stimuli of a street of houses presented on a projection screen (FOV: 75°×58°). For 2/3 of the trials, brief physical forward accelerations (jerks applied using a Stewart motion platform) accompanied the visual motion onset. Adding jerks enhanced vection significantly; Onset latency was reduced by 50, convincingness and intensity ratings increased by more than 60. Effect size was independent of visual acceleration (1.2 and 12m/s^2) and jerk size (about 0.8 and 1.6m/s^2 at participants’ head for 1 and 3cm displacement, respectively), and showed no interactions. Thus, quantitative matching between the visual and physical acceleration profiles might not be as critical as often believed as long as they match qualitatively and are temporally synchronized. These findings could be employed for improving the convincingness and effectiveness of low-cost simulators without the need for expensive, large motion platforms

    Status report of the baseline collimation system of CLIC. Part II

    Get PDF
    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the optics design has been optimised to improve the collimation efficiency. This report presents the current status of the the post-linac collimation system of CLIC. Part II is mainly dedicated to the study of the betatron collimation system and collimator wakefield effects.Comment: 25 pages, 13 figure

    Language difficulties in first year Science

    Full text link
    A key goal of the study entitled ‘A cross-disciplinary approach to language support for first year students in the science disciplines’, funded by the Carrick Institute for Learning and Teaching in Higher Education, is to examine the role of language in the learning of science by first-year university students. The disciplines involved are Physics, Chemistry and Biology. This national project also aims to transfer active learning skills, which are widely used in language teaching, to the teaching of science in first year. The paper discusses the background to the study, reports on some of the preliminary results on the language difficulties faced by first year student cohorts in science from data collected in 2008, and describes the framework we have established for the organization and delivery of first year science courses to be implemented in semester one 2009

    Embedding in-discipline language support for first year students in the sciences

    Full text link
    This paper reports on a project which aims at addressing the need to cater for the language needs of a diverse student body (both domestic and international student body) by embedding strategic approaches to learning and teaching in first year sciences in tertiary education. These strategies consist of active learning skills which are widely used in language learning. The disciplines covered by the project are Biology, Chemistry and Physics and involves the University of Canberra (UC), University of Sydney (USyd), University of Tasmania (UTAS), University of Technology, Sydney (UTS) and University of Newcastle (Newcastle) in Australia. This project is funded by the Australian Learning and Teaching Council (ALTC). The paper discusses the background to the study and reports on results on the language difficulties faced by first year science student cohorts from data collected in 2008 as well as qualitative data was also collected on 2008 students’ attitudes towards online science learning. It will also report on the results on the implementation of the learning strategies at UTS and UTAS in Physics and Chemistry disciplines in 2009. Keywords: First year science teaching, role of language in science teaching, active learning skill

    Modelling and Measurement of Charge Transfer in Multiple GEM Structures

    Get PDF
    Measurements and numerical simulations on the charge transfer in Gas Electron Multiplier (GEM) foils are presented and their implications for the usage of GEM foils in Time Projection Chambers are discussed. A small test chamber has been constructed and operated with up to three GEM foils. The charge transfer parameters derived from the electrical currents monitored during the irradiation with an Fe-55 source are compared with numerical simulations. The performance in magnetic fields up to 2 T is also investigated.Comment: 21 pages, 16 figures, submitted to NIM-
    corecore